Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant J ; 115(4): 1037-1050, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163295

RESUMO

Plants produce dimerized phenolic compounds as secondary metabolites. Hordatine A (HA), a dehydrodimer of p-coumaroylagmatine (pCA), is an antifungal compound accumulated at high levels in young barley (Hordeum vulgare) seedlings. The enzyme responsible for the oxidative dimerization of pCA, which is the final step of the hordatine biosynthetic pathway, has not been identified. In this study, we first verified the presence of this enzyme activity in the crude extract of barley seedlings. Because the enzyme activity was not dependent on H2 O2 , the responsible enzyme was not peroxidase, which was previously implicated in HA biosynthesis. The analysis of the dissection lines of wheat (Triticum aestivum) carrying aberrant barley 2H chromosomes detected HA in the wheat lines carrying the distal part of the 2H short arm. This chromosomal region contains two laccase genes (HvLAC1 and HvLAC2) that are highly expressed at the seedling stage and may encode enzymes that oxidize pCA during the formation of HA. Changes in the HvLAC transcript levels coincided with the changes in the HA biosynthesis-related enzyme activities in the crude extract and the HA content in barley seedlings. Moreover, HvLAC genes were heterologously expressed in Nicotiana benthamiana leaves and in bamboo (Phyllostachys nigra) suspension cells and HA biosynthetic activities were detected in the crude extract of transformed N. benthamiana leaves and bamboo suspension cells. The HA formed by the enzymatic reaction had the same stereo-configuration as the naturally occurring HA. These results demonstrate that HvLAC enzymes mediate the oxidative coupling of pCA during HA biosynthesis.


Assuntos
Hordeum , Hordeum/metabolismo , Ácidos Cumáricos/metabolismo , Lacase/genética , Lacase/metabolismo , Amidas/metabolismo , Acoplamento Oxidativo , Plântula/genética , Plântula/metabolismo
2.
Genes Cells ; 28(12): 881-892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37850683

RESUMO

The internalization of engineered high-density lipoprotein nanoparticles (engineered lipoproteins [eLPs]) with different lipid and protein compositions, zeta potentials, and/or sizes were analyzed in representative plant and mammalian cells. The impact of the addition of a cell-penetrating peptide to eLPs on the internalization was very small in Bright Yellow (BY)-2 protoplasts compared with HeLa cells. When eLPs were prepared with one of the abundant lipids in BY-2 cells, digalactosyldiacylglycerol (DGDG) (eLP4), its internalization was dramatically increased only in HeLa cells. Such an increase in HeLa cells was also obtained for liposomes containing DGDG in a DGDG content-dependent manner. Increasing the size and zeta potential of eLPs improved their internalization in both HeLa cells and in BY-2 protoplasts but to quite varying degrees. Although eLPs tended to stay at the plasma membrane (PM) in BY-2 protoplasts with much less internalization, the PM-bound eLPs somehow promoted the internalization of coexisting nanobeads in cell culture media. These results provide fundamental insight into the future design of lipid nanoparticles for drug delivery in mammalian and plant cells.


Assuntos
Lipoproteínas , Nanopartículas , Animais , Humanos , Células HeLa , Nanopartículas/química , Mamíferos
3.
Plant J ; 112(5): 1266-1280, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305861

RESUMO

Suspension-cultured cells of a bamboo species (Bambusa multiplex; Bm) produce 3-O-feruloylquinic acid (3-FQA) and 3-O-p-coumaroylquinic acid (3-pCQA) by treatment with the histone deacetylase inhibitor suberoyl bis-hydroxamic acid (SBHA). Acyltransferases catalyzing the formation of 5-O-hydroxycinnamoylquinic acid esters by transesterification from hydroxycinnamoyl-CoAs to the C-5 hydroxy group of quinic acid (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase, HQT) have been identified in the biosynthesis of chlorogenic acids and monolignols; however, an HQT that catalyzes the acylation of the C-3 hydroxy group of quinic acid has not been identified previously. In the present study, we purified a native HQT from SBHA-treated Bm cells. The purified enzyme preferentially accepted feruloyl-/p-coumaroyl-CoAs as acyl-donors and quinic acid as the acyl-acceptor, and the enzyme specifically formed 3-FQA and 3-pCQA but not 5-O-hydroxycinnamoylquinic acid esters or esters with shikimic acid. A cDNA (BmHQT1) encoding this HQT was isolated. Although BmHQT1 is a phylogenetically unique member of the BAHD acyltransferase superfamily that does not cluster with other HQTs, functional characterization of the recombinant enzyme verified that BmHQT1 catalyzes the regiospecific formation of 3-O-hydroxycinnamoylquinic acid esters. Transcript levels of BmHQT1 markedly increased in Bm cells cultured in the presence of SBHA. Moreover, elevated acetylation levels of histone H3 were observed in the coding region of BmHQT1 in the presence of SBHA, indicating that the induced accumulation of 3-FQA/3-pCQA by SBHA is caused by transcriptional activation of BmHQT1 by the action of SBHA as a histone deacetylase inhibitor. The results demonstrate the utility of HDAC inhibitors for discovery of cryptic secondary metabolites and unknown biosynthetic enzymes.


Assuntos
Inibidores de Histona Desacetilases , Ácido Quínico , Ácido Quínico/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Aciltransferases/genética , Aciltransferases/metabolismo , Ácido Clorogênico/metabolismo , Ésteres/metabolismo
4.
Bioorg Med Chem Lett ; 29(4): 664-667, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30595444

RESUMO

6-Tuliposides A (PosA) and B (PosB) are glucose esters accumulated in tulip (Tulipa gesneriana) as major defensive secondary metabolites. Pos-converting enzymes (TgTCEs), which we discovered previously from tulip, catalyze the conversion reactions of PosA and PosB to antimicrobial tulipalins A (PaA) and B (PaB), respectively. The TgTCEs, belonging to the carboxylesterase family, specifically catalyze intramolecular transesterification, but not hydrolysis. In this report, we synthesized analogues of Pos with various alcohol moieties, and measured the TgTCE activity together with a determination of the kinetic parameters for these analogues with a view to probe the substrate recognition mechanism of the unique non-ester-hydrolyzing TgTCEs. It was found that d-glucose-like structure and number of the hydroxyl group in alcohol moiety are important for substrate recognition by TgTCEs. Among the analogues examined, 1,2-dideoxy analogues of PosA and PosB were found to be recognized by the TgTCEs more specifically than the authentic substrates by lowering Km values. The present results will provide a basis for designing simple, stable synthetic substrate analogues for crystallographic analysis of TgTCEs.


Assuntos
Álcoois/metabolismo , Carboxilesterase/metabolismo , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Hidroxibutiratos/metabolismo , Oxibato de Sódio/análogos & derivados , Ésteres , Hidrólise , Oxibato de Sódio/metabolismo , Especificidade por Substrato
5.
Chembiochem ; 19(8): 768-779, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29333684

RESUMO

Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high-volume, low-price sectors, such as polymers, to low-volume, high-price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas-phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a "synthetic platform technology". Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2-arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme.


Assuntos
Biocatálise , Hidroliases/química , Nitrilas/síntese química , Oximas/química , Água/química , Hidroliases/metabolismo , Especificidade por Substrato
6.
Biosci Biotechnol Biochem ; 82(5): 810-820, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29475400

RESUMO

6-Tuliposide B (PosB), a major secondary metabolite that accumulates in tulip (Tulipa gesneriana), is converted to the antibacterial lactone, tulipalin B (PaB), by PosB-converting enzyme (TCEB). TgTCEB1 and TgTCEB-R, which encode TCEB, are specifically expressed in tulip pollen and roots, respectively, but are hardly expressed in other tissues (e.g. leaves) despite the presence of substantial PosB-converting activity, suggesting the existence of another TCEB isozyme. Here, we describe the identification of TgTCEB-L ("L" for leaf), a paralog of TgTCEB1 and TgTCEB-R, from leaves via native enzyme purification. The enzymatic characters of TgTCEB-L, including catalytic activity and subcellular localization, were substantially the same as those of TgTCEB1 and TgTCEB-R. However, TgTCEB-L did not exhibit tissue-specific expression. Identification of TgTCEB-L explains the PosB-converting activity detected in tissues where TgTCEB1 and TgTCEB-R transcripts could not be detected, indicating that tulip subtilizes the three TgTCEB isozymes depending on the tissue.

7.
Biosci Biotechnol Biochem ; 81(1): 81-94, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27696958

RESUMO

Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/ß-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/ß-hydrolase fold superfamily.


Assuntos
Carboxilesterase/metabolismo , Tulipa/enzimologia , Sequência de Aminoácidos , Carboxilesterase/química , Glicosídeos/metabolismo , Hidrólise
8.
Biosci Biotechnol Biochem ; 81(6): 1185-1193, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28485211

RESUMO

6-Tuliposide B (PosB) is a glucose ester accumulated in tulip (Tulipa gesneriana) as a major secondary metabolite. PosB serves as the precursor of the antimicrobial lactone tulipalin B (PaB), which is formed by PosB-converting enzyme (TCEB). The gene TgTCEB1, encoding a TCEB, is transcribed in tulip pollen but scarcely transcribed in other tissues (e.g. roots) even though those tissues show high TCEB activity. This led to the prediction of the presence of a TCEB isozyme with distinct tissue specificity. Herein, we describe the identification of the TgTCEB-R gene from roots via native enzyme purification; this gene is a paralog of TgTCEB1. Recombinant enzyme characterization verified that TgTCEB-R encodes a TCEB. Moreover, TgTCEB-R was localized in tulip plastids, as found for pollen TgTCEB1. TgTCEB-R is transcribed almost exclusively in roots, indicating a tissue preference for the transcription of TCEB isozyme genes.


Assuntos
Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Hidroxibutiratos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Tulipa/enzimologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Biotransformação , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Pólen/enzimologia , Pólen/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metabolismo Secundário/genética , Especificidade por Substrato , Transcrição Gênica , Tulipa/genética
9.
Plant J ; 83(2): 252-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25997073

RESUMO

6-Tuliposides A (PosA) and B (PosB), which are the major secondary metabolites in tulip (Tulipa gesneriana), are enzymatically converted to the antimicrobial lactonized aglycons, tulipalins A (PaA) and B (PaB), respectively. We recently identified a PosA-converting enzyme (TCEA) as the first reported member of the lactone-forming carboxylesterases. Herein, we describe the identification of another lactone-forming carboxylesterase, PosB-converting enzyme (TCEB), which preferentially reacts with PosB to give PaB. This enzyme was isolated from tulip pollen, which showed high PosB-converting activity. Purified TCEB exhibited greater activity towards PosB than PosA, which was contrary to that of the TCEA. Novel cDNA (TgTCEB1) encoding the TCEB was isolated from tulip pollen. TgTCEB1 belonged to the carboxylesterase family and was approximately 50% identical to the TgTCEA polypeptides. Functional characterization of the recombinant enzyme verified that TgTCEB1 catalyzed the conversion of PosB to PaB with an activity comparable with the native TCEB. RT-qPCR analysis of each part of plant revealed that TgTCEB1 transcripts were limited almost exclusively to the pollen. Furthermore, the immunostaining of the anther cross-section using anti-TgTCEB1 polyclonal antibody verified that TgTCEB1 was specifically expressed in the pollen grains, but not in the anther cells. N-terminal transit peptide of TgTCEB1 was shown to function as plastid-targeted signal. Taken together, these results indicate that mature TgTCEB1 is specifically localized in plastids of pollen grains. Interestingly, PosB, the substrate of TgTCEB1, accumulated on the pollen surface, but not in the intracellular spaces of pollen grains.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Glucosídeos/metabolismo , Lactonas/metabolismo , Pólen/enzimologia , Tulipa/enzimologia , Hidrolases de Éster Carboxílico/genética , Catálise , Dados de Sequência Molecular , RNA Mensageiro/genética
10.
Biosci Biotechnol Biochem ; 79(1): 25-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25126881

RESUMO

Tulipalin B (α-methylene-ß-hydroxy-γ-butyrolactone, PaB) is an antimicrobial natural product occurring in tulip (Tulipa gesneriana). PaB is directly formed from the precursor glucose ester 6-tuliposide B (PosB) by endogenous Pos-converting enzyme (TCE). Despite the potential usefulness of antibacterial PaB in various industrial applications, lack of facile synthetic schemes hampers its practical use. Herein, we describe an environmentally benign and facile process for the preparation of PaB using tulip biomass materials based on one-step enzyme reaction catalyzed by TCE without the use of petroleum-derived solvents. By screening 115 tulip cultivars, we found three elite cultivars, which accumulated PosB almost exclusively in flower tissues. The flower extracts with aqueous ethanol were partially purified with activated charcoal and subjected to the enzyme reaction with reusable immobilized TCE prepared from bulb crude extracts. The reaction was completed in a few hours at room temperature, and PaB was purified with activated charcoal and ethanol in a batch-wise manner.


Assuntos
4-Butirolactona/análogos & derivados , Anti-Infecciosos/isolamento & purificação , Hidrolases de Éster Carboxílico/química , Flores/química , Proteínas de Plantas/química , Tulipa/química , 4-Butirolactona/biossíntese , 4-Butirolactona/isolamento & purificação , Anti-Infecciosos/metabolismo , Biomassa , Hidrolases de Éster Carboxílico/metabolismo , Carvão Vegetal , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Etanol , Flores/enzimologia , Glucosídeos/metabolismo , Química Verde , Hidroxibutiratos/metabolismo , Extratos Vegetais/química , Proteínas de Plantas/metabolismo , Tulipa/enzimologia
11.
Biochem Biophys Rep ; 38: 101692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38571553

RESUMO

In capsaicin biosynthesis, vanillin aminotransferase (VAMT; EC 2.6.1.119) catalyzes the conversion of vanillin (V) to vanillylamine (VA). In vitro analysis of the recombinant VAMT enzyme has been reported; however, this enzyme catalyzed only the V-forming reaction and not the VA-forming reaction, which is inconsistent with the postulated pathway for capsaicin biosynthesis. In this study, we expressed, purified, and characterized functional recombinant VAMT of Capsicum chinense cv. Habanero from an Escherichia coli strain. The enzyme catalyzed reversible transamination between V and VA, and its VA-forming activity was high when γ-aminobutyric acid (GABA) was used as an amino donor. The enzyme exhibited maximum activity at pH 8.0 and 55 °C, and was stable up to 60 °C over a pH range from 4.5 to 8.0. The enzyme was stable in the presence of various chemicals and metal ions. The enzyme accepted several 4-8-carbon long primary amines and ω-amino acids with carbon chains longer than 4 as amino donors despite the narrow specificity of the amino acceptor. Based on its kinetic attributes and localization, VAMT appears to have evolved from GABA-aminotransferase to catalyze reversible transamination between V and VA, and is responsible for VA biosynthesis using GABA as an amino donor in the cytosol of capsicum fruit cells.

12.
Plant Physiol ; 159(2): 565-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22474185

RESUMO

Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.


Assuntos
Carboxilesterase/química , Flores/enzimologia , Glicosídeos/química , Lactonas/química , Proteínas de Plantas/química , Oxibato de Sódio/análogos & derivados , Tulipa/enzimologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Sequência de Aminoácidos , Carboxilesterase/genética , Carboxilesterase/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Escherichia coli/química , Escherichia coli/genética , Esterificação , Flores/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plastídeos/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Oxibato de Sódio/química , Especificidade por Substrato , Tulipa/genética
13.
Appl Microbiol Biotechnol ; 97(23): 10045-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24061417

RESUMO

Two ß-glucosidases (BGLs 1 and 2) were purified to homogeneity from the extracellular enzyme preparations of the ethanol-fermenting Mucor circinelloides NBRC 4572 statically grown on rice straw. BGLs 1 and 2 are monomeric glycoproteins whose apparent molecular masses (Ms) are around 78 kDa, which decreased by approximately 10 kDa upon enzymatic deglycosylation. Both BGLs showed similar enzyme characteristics in optimal temperature and pH, stability, and inhibitors. They were active against a wide range of aryl-ß-glucosides and ß-linked glucose oligosaccharides. Their amino acid sequences shared 81% identity and exhibited less than 60% identity with the known family-3 BGLs. Considering properties such as reduced inhibition by ethanol, glucose, and cellobiose, low transglucosylation activity, wider substrate range, less binding affinity to lignocellulosic materials, and abundant expression, BGL1 is likely to be more suitable for bioethanol production than BGL2 via simultaneous saccharification and fermentation of rice straw with M. circinelloides.


Assuntos
Clonagem Molecular , Etanol/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Mucor/enzimologia , beta-Glucosidase/química , beta-Glucosidase/isolamento & purificação , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , Dados de Sequência Molecular , Peso Molecular , Mucor/química , Mucor/genética , Especificidade por Substrato , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
14.
Biosci Biotechnol Biochem ; 77(5): 1042-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23649245

RESUMO

Tuliposide A-converting enzyme (TCEA) catalyzes the conversion of 6-tuliposide A to its lactonized aglycon, tulipalin A, in the tulip (Tulipa gesneriana). The TgTCEA gene, isolated previously from petals, was transcribed in all tulip tissues but not in the bulbs despite the presence of TCEA activity, which allowed prediction of the presence of a TgTCEA isozyme gene preferentially expressed in the bulbs. Here, the TgTCEA-b gene, the TgTCEA homolog, was identified in bulbs. TgTCEA-b polypeptides showed approximately 77% identity to the petal TgTCEA. Functional characterization of the recombinant enzyme verified that TgTCEA-b encoded the TCEA. Moreover, the TgTCEA-b was found to be localized to plastids, as found for the petal TgTCEA. Transcript analysis revealed that TgTCEA-b was functionally transcribed in the bulb scales, unlike the TgTCEA gene, whose transcripts were absent there. In contrast, TgTCEA-b transcripts were in the minority in other tissues where TgTCEA transcripts were dominant, indicating a tissue preference for the transcription of those isozyme genes.


Assuntos
Glicosídeos/metabolismo , Oxibato de Sódio/análogos & derivados , Tulipa/enzimologia , Clonagem Molecular , DNA Complementar/genética , Espaço Intracelular/enzimologia , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Oxibato de Sódio/metabolismo , Tulipa/citologia , Tulipa/genética , Tulipa/metabolismo
15.
Z Naturforsch C J Biosci ; 78(9-10): 353-363, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37402691

RESUMO

Tuliposides (Pos) are major defense-related secondary metabolites in tulip, having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones (tulipalins) by an endogenous Pos-converting enzyme. Based on this enzyme activity, we examined tulip bulb extracts and detected HPLC peaks that disappeared following the reaction by the Pos-converting enzyme. Spectroscopic analyses of the three purified compounds revealed that one of them was a glucose ester-type Pos, while the other two were identified as a glucoside ester-type Pos. These compounds were designated as PosK, L, and M. They were specific to bulbs, with the highest content in the outermost layer, but they were markedly less abundant than PosG, the minor bulb Pos we identified earlier. The study results suggest that tulip bulbs contain at least four minor Pos in addition to the major 6-PosA. Although PosK-M were present in almost all of the tested tulip cultivars, they were detected in only a few wild species, indicative of their potential utility as chemotaxonomic markers in tulip. Identification of PosK-M as 6-PosA derivatives unveils the biosynthetic diversity of Pos, the well-known group of secondary metabolites in tulip.


Assuntos
Tulipa , Tulipa/química , Glucosídeos/química , Glucose , Lactonas , Ésteres
16.
Plant Physiol ; 157(3): 985-97, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875895

RESUMO

Benzoxazinones (Bxs) are major defensive secondary metabolites in wheat (Triticum aestivum), rye (Secale cereale), and maize (Zea mays). Here, we identified full sets of homeologous and paralogous genes encoding Bx glucosyltransferase (GT) and Bx-glucoside glucosidase (Glu) in hexaploid wheat (2n = 6x = 42; AABBDD). Four GT loci (TaGTa-TaGTd) were mapped on chromosomes 7A, 7B (two loci), and 7D, whereas four glu1 loci (Taglu1a-Taglu1d) were on chromosomes 2A, 2B (two loci), and 2D. Transcript levels differed greatly among the four loci; B-genome loci of both TaGT and Taglu1 genes were preferentially transcribed. Catalytic properties of the enzyme encoded by each homeolog/paralog also differed despite high levels of identity among amino acid sequences. The predominant contribution of the B genome to GT and Glu reactions was revealed, as observed previously for the five Bx biosynthetic genes, TaBx1 to TaBx5, which are separately located on homeologous groups 4 and 5 chromosomes. In rye, where the ScBx1 to ScBx5 genes are dispersed to chromosomes 7R and 5R, ScGT and Scglu were located separately on chromosomes 4R and 2R, respectively. The dispersal of Bx-pathway loci to four distinct chromosomes in hexaploid wheat and rye suggests that the clustering of Bx-pathway genes, as found in maize, is not essential for coordinated transcription. On the other hand, barley (Hordeum vulgare) was found to lack the orthologous GT and glu loci like the Bx1 to Bx5 loci despite its close phylogenetic relationship with wheat and rye. These results contribute to our understanding of the evolutionary processes that the Bx-pathway loci have undergone in grasses.


Assuntos
Benzoxazinas/metabolismo , Cromossomos de Plantas/genética , Glucosidases/genética , Glucosiltransferases/genética , Família Multigênica/genética , Secale/genética , Triticum/genética , Benzoxazinas/química , Biocatálise , Vias Biossintéticas/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Diploide , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hordeum/enzimologia , Hordeum/genética , Cinética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Poliploidia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Secale/enzimologia , Homologia de Sequência do Ácido Nucleico , Triticum/enzimologia
17.
Z Naturforsch C J Biosci ; 77(7-8): 317-330, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35245421

RESUMO

Although Z-2-oxo-4-methyl-3-pentene-1,5-dioic acid (Z-OMPD) has been identified as a major dicarboxylic acid in tulip tissues, its biosynthetic pathway has not been elucidated. Herein, Z-OMPD was isolated from tulip leaves and chemically synthesized. Comparisons of these samples revealed that Z-OMPD exists as a tautomeric mixture at physiological pH. As a regioisomer of Z-OMPD, we enzymatically and chemically prepared 4-methylene-2-oxo-glutaric acid (4-MEOG) for the first time. Using these compounds as standards, the occurrence of Z-OMPD and 4-MEOG in various tissues of the tulip cultivar "Murasakizuisho" was evaluated directly and by 2,4-dinitrophenylhydrazone derivatization. Z-OMPD was found to be abundant in the aerial tissues, whereas 4-MEOG was almost absent from all tissues. Stability analyses of Z-OMPD and 4-MEOG revealed that no double bond isomerization occurred at physiological pH, suggesting that enzyme systems are responsible for Z-OMPD biosynthesis in tulip tissues.


Assuntos
Tulipa , Alcenos , Glutaratos , Oxotremorina/análogos & derivados
18.
Plant Biotechnol (Tokyo) ; 39(3): 229-240, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36349231

RESUMO

The secondary cell wall, which is mainly composed of cellulose, hemicellulose, and lignin, constitutes woody tissues and gives physical strength and hydrophobic properties for resistance against environmental stresses. We cloned and functionally analyzed the homologous transcription factor (TF) genes of SECONDARY WALL NAC (SWN) proteins from Hachiku bamboo (Phyllostachys nigra; PnSWNs). An RT-PCR analysis showed that PnSWNs are expressed in young tissues in bamboo. Their transcriptional activation activities were higher than that of the Arabidopsis NAC SECONDARY WALL THICKENING PROMOTING FACTOR 3 (NST3) TF, which was equivalent to SWN TFs in monocot. PnSWNs preferred to activate the genes related to secondary cell wall formation but not the genes related to programmed cell death. When PnSWNs were expressed in Arabidopsis, they highly induced secondary cell wall formation, like previously-shown rice SWN1. Dissection analysis revealed that this high activity largely depends on C-terminal domain. These results demonstrate that the cloned bamboo SWNs function as regulators of secondary cell wall formation with strong activation ability derived from C-terminal domain, and could be served as new genetic tools for secondary cell wall manipulation.

19.
J Biol Chem ; 285(10): 7722-38, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20061395

RESUMO

The medicinal plant Psychotria ipecacuanha produces ipecac alkaloids, a series of monoterpenoid-isoquinoline alkaloids such as emetine and cephaeline, whose biosynthesis derives from condensation of dopamine and secologanin. Here, we identified three cDNAs, IpeOMT1-IpeOMT3, encoding ipecac alkaloid O-methyltransferases (OMTs) from P. ipecacuanha. They were coordinately transcribed with the recently identified ipecac alkaloid beta-glucosidase Ipeglu1. Their amino acid sequences were closely related to each other and rather to the flavonoid OMTs than to the OMTs involved in benzylisoquinoline alkaloid biosynthesis. Characterization of the recombinant IpeOMT enzymes with integration of the enzymatic properties of the IpeGlu1 revealed that emetine biosynthesis branches off from N-deacetylisoipecoside through its 6-O-methylation by IpeOMT1, with a minor contribution by IpeOMT2, followed by deglucosylation by IpeGlu1. The 7-hydroxy group of the isoquinoline skeleton of the aglycon is methylated by IpeOMT3 prior to the formation of protoemetine that is condensed with a second dopamine molecule, followed by sequential O-methylations by IpeOMT2 and IpeOMT1 to form cephaeline and emetine, respectively. In addition to this central pathway of ipecac alkaloid biosynthesis, formation of all methyl derivatives of ipecac alkaloids in P. ipecacuanha could be explained by the enzymatic activities of IpeOMT1-IpeOMT3, indicating that they are sufficient for all O-methylation reactions of ipecac alkaloid biosynthesis.


Assuntos
Cephaelis , Eméticos/metabolismo , Emetina/análogos & derivados , Emetina/biossíntese , Isoenzimas/metabolismo , Metiltransferases/metabolismo , Cephaelis/anatomia & histologia , Cephaelis/química , Cephaelis/enzimologia , Cromatografia Líquida , Eméticos/química , Emetina/química , Isoenzimas/classificação , Isoenzimas/genética , Metilação , Metiltransferases/classificação , Metiltransferases/genética , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Massas em Tandem
20.
Appl Biochem Biotechnol ; 193(7): 2061-2075, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33544364

RESUMO

Phenolic acid decarboxylase (PAD) catalyzes the decarboxylation of hydroxycinnamic acids to produce hydroxystyrenes, which serve as starting materials for the production of polymers. Bamboo (Phyllostachys nigra; Pn) cells, a suitable host for producing phenylpropanoid-derived compounds, were transformed to express PAD of Bacillus amyloliquefaciens (BaPAD). BaPAD-transformed cells accumulated several metabolites that were not detected in wild-type Pn cells or BaPAD-negative transformant. Two major metabolites were isolated from BaPAD-transformed cells, and elucidation of their chemical structures confirmed these as 4-vinylphenol ß-primeveroside (4-VPP) and 4-vinylguaiacol ß-primeveroside (4-VGP). The production titers of 4-VPP and 4-VGP reached 48 and 33 mg/L at the maximum, respectively. Feeding experiments with 4-vinylphenol (4-VP), 4-vinylguaiacol (4-VG), and their glucosides indicated that 4-VPP and 4-VGP are formed by sequential glycosylation of 4-VP and 4-VG via their corresponding glucosides. Our results demonstrate the versatility of Pn cells for producing styrene derivatives, and indicate the presence of a unique glycosylation pathway to produce 4-VPP and 4-VGP in Pn cells.


Assuntos
Proteínas de Bactérias/biossíntese , Carboxiliases/biossíntese , Expressão Gênica , Guaiacol/análogos & derivados , Fenóis/metabolismo , Células Vegetais/metabolismo , Poaceae , Proteínas de Bactérias/genética , Carboxiliases/genética , Guaiacol/metabolismo , Poaceae/citologia , Poaceae/genética , Poaceae/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa