Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
2.
Biomed Res Int ; 2021: 8836243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124262

RESUMO

Severe burns are acute wounds caused by local heat exposure, resulting in life-threatening systemic effects and poor survival. However, the specific molecular mechanisms remain unclear. First, we downloaded gene expression data related to severe burns from the GEO database (GSE19743, GSE37069, and GSE77791). Then, a gene expression analysis was performed to identify differentially expressed genes (DEGs) and construct protein-protein interaction (PPI) network. The molecular mechanism was identified by enrichment analysis and Gene Set Enrichment Analysis. In addition, STEM software was used to screen for genes persistently expressed during response to severe burns, and receiver operating characteristic (ROC) curve was used to identify key DEGs. A total of 2631 upregulated and 3451 downregulated DEGs were identified. PPI network analysis clustered these DEGs into 13 modules. Importantly, module genes mostly related with immune responses and metabolism. In addition, we identified genes persistently altered during the response to severe burns corresponding to survival and death status. Among the genes with high area under the ROC curve in the PPI network gene, CCL5 and LCK were identified as key DEGs, which may affect the prognosis of burn patients. Gene set variation analysis showed that the immune response was inhibited and several types of immune cells were decreased, while the metabolic response was enhanced. The results showed that persistent gene expression changes occur in response to severe burns, which may underlie chronic alterations in physiological pathways. Identifying the key altered genes may reveal potential therapeutic targets for mitigating the effects of severe burns.


Assuntos
Queimaduras , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Mapas de Interação de Proteínas/imunologia , Transcriptoma/imunologia , Queimaduras/genética , Queimaduras/imunologia , Queimaduras/patologia , Biologia Computacional , Humanos , Índices de Gravidade do Trauma
3.
Tissue Cell ; 71: 101506, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33607525

RESUMO

Advanced platelet-rich fibrin (A-PRF) is an autogenous biological material obtained from peripheral blood. A-PRF extract (A-PRFe) contains a high concentration of various cytokines that are increasingly appreciated for their roles in improving stem cell repairing function during tissue regeneration. However, the optimal A-PRFe concentration to stimulate stem cells is unknown. This study aimed to identify the optimal concentrations of A-PRFe to promote adipogenic and osteogenic differentiation of human adipose-derived stem cells (ASCs). We produced A-PRFe from A-PRF clots by centrifuging fresh peripheral blood samples and isolated and identified ASCs using surface CD markers and multilineage differentiation potential. Enzyme-linked immunosorbent assay (ELISA) showed the concentrations of several cytokines, including b-FGF, PDGF-BB, and others, increased gradually, peaked on day 7 and then decreased. Cell proliferation assays showed A-PRFe significantly stimulated ASC proliferation, and proliferation significantly increased at higher A-PRFe doses. The degree of adipogenic and osteogenic differentiation increased at higher A-PRFe concentrations in the culture medium, as determined by oil red O and alizarin red staining. Reverse transcription polymerase chain reaction (RT-PCR) showed that expression levels of genes related to adipogenic/osteogenic differentiation (PPARγ2, C/EBPα, FABP4, Adiponectin, and ALP, OPN, OCN, RUNX2), paracrine (HIF-1α, VEGF, IGF-2) and immunoregulation (HSP70, IL-8) function were higher in groups with a higher concentration of A-PRFe than in lower concentration groups. This study demonstrates that A-PRFe is ideal for use in ASC applications in regenerative medicine because it improves biological functions, including proliferation, adipogenic/osteogenic differentiation, and paracrine function in a dose-dependent manner.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Misturas Complexas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fibrina Rica em Plaquetas/química , Misturas Complexas/química , Relação Dose-Resposta a Droga , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa