RESUMO
Haematopoietic stem cell transplantation (HSCT) remains the only cure for most haematological malignancies, however, the mortality rate remains high. Complications after HSCT include relapse, graft versus host disease (GvHD), graft rejection and infection. Over the last few years several groups, have demonstrated that non-HLA gene polymorphisms can be predictive of outcome after HSCT. Since the glucocorticoid cortisol is pivotal in the regulation of the immune system, we decided to examine single nucleotide polymorphisms (SNPs; rs6198, rs33388 and rs33389) within the glucocorticoid receptor (GR) and correlate with HSCT outcome. The training set consisted of patients (n = 458) who underwent HSCT for acute leukaemia between 1983 and 2005. In the recipients, the absence of the ACT haplotype and absence of the T allele of rs33388 were associated with decreased OS and the absence of the ACT haplotype, the absence of the T allele of rs33388 and the presence of the ATA haplotype were associated with increased risk of relapse. In addition, the presence of the ACT haplotype in the recipient showed a trend to be associated with increased risk of chronic graft versus host disease (cGvHD). The patients in this cohort received mainly myeloablative conditioning (n = 327). The SNPs in the glucocorticoid receptor were then investigated in a validation set (n = 251) of HSCT patients transplanted for acute leukaemia from 2006. This cohort contained significantly more patients that had received reduced intensity conditioning (RIC). Some of the results could be validated in these patients. However, contrary to the training set, the absence of the haplotype ACT in the donor in this cohort was associated with increased risk of cGvHD. Differences in the conditioning were shown to influence the results. These results are the first to associate GR SNPs with HSCT outcome and demonstrate the inherent problems of replicating SNP association studies in HSCT, due to different pre-transplant regimens.
RESUMO
BACKGROUND: Allogeneic hematopoietic cell transplantation is the main curative therapy for patients with chronic myeloid leukemia who do not respond to tyrosine kinase inhibitors. It has been proposed that non-human leukocyte antigen gene polymorphisms influence outcome after hematopoietic cell transplantation and could be used alongside traditional patient-donor and transplant characteristics to create a recipient risk profile associated with allogeneic hematopoietic cell transplantation. DESIGN AND METHODS: A previous study from the European Group for Blood and Marrow Transplantation showed that the absence of recipient tumor necrosis factor receptor II, absence of donor interleukin 10 ATA/ACC and presence of donor interleukin 1 receptor antagonist allele 2 genotypes were associated with decreased survival and increased non-relapse mortality in adult patients with chronic myeloid leukemia undergoing myeloablative human leukocyte antigen-identical sibling transplantation. To explore these associations in unrelated donor transplantation, these polymorphisms were genotyped in 383 adult patients with chronic myeloid leukemia who underwent hematopoietic cell transplantation from unrelated donors matched for 10/10 human leukocyte antigens. RESULTS: The polymorphisms were not associated with overall survival, non-relapse mortality, relapse or acute graft-versus-host disease in the unrelated donor cohort. Comparison of the unrelated donor and human leukocyte antigen-identical sibling cohorts showed differences in survival and clinical characteristics. CONCLUSIONS: We did not confirm that non-human leukocyte antigen polymorphisms were associated with outcomes in myeloablative unrelated donor hematopoietic cell transplantation for chronic myeloid leukemia, possibly because of the strong association between clinical variables and outcome which masked more subtle genetic effects.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Histocompatibilidade/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Adolescente , Adulto , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle , Antígenos HLA/genética , Antígenos HLA/imunologia , Histocompatibilidade/imunologia , Teste de Histocompatibilidade , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Masculino , Pessoa de Meia-Idade , Agonistas Mieloablativos/administração & dosagem , Polimorfismo Genético , Receptores Tipo II de Interleucina-1/genética , Receptores Tipo II de Interleucina-1/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Recidiva , Fatores de Risco , Análise de Sobrevida , Transplante Homólogo , Doadores não RelacionadosRESUMO
Introduction: Acute graft vs. host disease (aGvHD) is a frequent complication following allogeneic haematopoeitic transplantation (HSCT). Despite recent advances, there are no universally accepted biomarkers to determine development of aGvHD. MicroRNAs miR-146a and miR-155 have been previously associated with aGvHD and show promise as clinically translatable biomarkers. In this study, we performed comprehensive expression profiling of miR-146a, miR-155, and miR-155* expression in aGvHD target tissue and biofluids and relate expression to post-HSCT outcomes. Materials and Methods: MicroRNA expression was assessed by qRT-PCR in gastrointestinal (n = 31) and skin (n = 31) biopsies as well as serum (exploratory cohort n = 34, verification cohort n = 81, diagnostic cohort n = 65) and urine (exploratory cohort n = 30, verification cohort n = 56, diagnostic cohort n = 20) biofluids, including extracellular vesicle (EV) cohorts (serum EV n = 15, urine EV n = 30). Expression was related to aGvHD incidence, severity and overall survival. Results: In GI samples, expression of miR-155 (p = 0.03) and miR-146a (p = 0.03) was higher at aGvHD onset compared to patients with no GvHD. In skin biopsies, expression of miR-155 (p = 0.004) was upregulated in aGvHD patients compared to normal control skin. Expression of miR-146a was higher in aGvHD compared to no aGvHD biopsies (p = 0.002). In serum, miR-155 (p = 0.03) and miR-146a (p = 0.02) expression was higher at day 14 (D14), while in urine expression was elevated at D7 post-HSCT in patients who developed aGvHD compared to those disease-free. This was verified in an independent serum (miR-155 p = 0.005, miR-146a p = 0.003) and urine (miR-155 p = 0.02, miR-146a p = 0.04) cohort, where both microRNAs were also associated with aGvHD by ROC analysis. In serum and urine samples taken at the time of aGvHD symptoms, expression of miR-155 and miR-146a was also elevated (serum miR-155 p = 0.03, miR-146a p < 0.001; urine miR-155 p = 0.02, miR-146a p = 0.02). In contrast, miR-146a and miR-155 were downregulated at D14 in serum EVs and at D7 in urine EVs in patients who developed aGvHD compared to those that remained disease-free, in both an exploratory (serum miR-155 p = 0.02, miR-146a p = 0.06; urine miR-155 p = 0.02, miR-146a p = 0.07) and an independent cohort (serum miR-155 p = 0.01, miR-146a p = 0.02). Conclusions: These results further support a role for miR-155 and miR-146a as non-invasive, clinically relevant biomarkers for aGvHD. However, the link between their involvement in generalized inflammation and in specific pathophysiology requires further investigation at a systemic level.
Assuntos
Biomarcadores/sangue , Doença Enxerto-Hospedeiro/imunologia , Inflamação/imunologia , Intestinos/fisiologia , MicroRNAs/sangue , Adolescente , Adulto , Idoso , Biomarcadores/urina , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/urina , Pessoa de Meia-Idade , Fenômenos Fisiológicos da Pele , Adulto JovemRESUMO
Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).
Assuntos
Antígenos HLA/genética , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleotídeo Único , Aldeído Redutase/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Leucemia Mieloide Aguda/mortalidade , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , População Branca/genéticaRESUMO
BACKGROUND: Non-HLA gene polymorphisms have been shown to influence outcome after allogeneic hematopoietic stem cell transplantation. Results were derived from heterogeneous, small populations and their value remains a matter of debate. DESIGN AND METHODS: In this study, we assessed the effect of single nucleotide polymorphisms in genes for interleukin 1 receptor antagonist (IL1RN), interleukin 4 (IL4), interleukin 6 (IL6), interleukin 10 (IL10), interferon (IFNG), tumor necrosis factor (TNF) and the cell surface receptors tumor necrosis factor receptor II (TNFRSFIB), vitamin D receptor (VDR) and estrogen receptor alpha (ESR1) in a homogeneous cohort of 228 HLA identical sibling transplants for chronic myeloid leukemia. Three good predictors of overall survival, identified via statistical methods including Cox regression analysis, were investigated for their effects on transplant-related mortality and relapse. Predictive power was assessed after integration into the established European Group for Blood and Marrow Transplantation (EBMT) risk score. RESULTS: Absence of patient TNFRSFIB 196R, absence of donor IL10 ATA/ACC and presence of donor IL1RN allele 2 genotypes were associated with increased transplantation-related mortality and decreased survival. Application of prediction error and concordance index statistics gave evidence that integration improved the EBMT risk score. CONCLUSIONS: Non-HLA genotypes were associated with survival after allogeneic hematopoietic stem cell transplantation. When three genetic polymorphisms were added into the EBMT risk model they improved the goodness of fit. Non-HLA genotyping could, therefore, be used to improve donor selection algorithms and risk assessment prior to allogeneic hematopoietic stem cell transplantation.
Assuntos
Instabilidade Genômica , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/cirurgia , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Estudos de Coortes , Citocinas/genética , Feminino , Genótipo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/mortalidade , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida/tendências , Resultado do Tratamento , Adulto JovemRESUMO
An improved assay for the detection of single nucleotide polymorphisms (SNP) of mutant DNA using a combination of peptide nucleic acid (PNA) probes, a cationic conjugated polymer (CCP) and non-ionic surfactant is reported. A comparison between CCP/surfactant and CCP alone shows enhancement in the discrimination between mutant and wild type DNA by a factor of two. A discrimination factor of 70% and 92% was calculated for single and five bases mismatched mutants, respectively when using CCP/surfactant. Furthermore, CCP/surfactant provides a strong emissive donor which increases signal to noise ratio and prevents fluctuation in the output signal caused by the suspension nature of the CCP (due to polymer aggregation) in water. The fluorescence resonance energy transfer (FRET) ratio which defined as the ratio of PL emission of the acceptor to that of the donor, was found to be 20% better when the location of the mutation is five bases away from the duplex terminal compared to that in the centre of the duplex. The enhance discrimination referred to the difference in the FRET and reabsorption rates in different types of duplex. The FRET ratio can be very sensitive to the sample excitation strength, emission collection and spectrometer setting.
Assuntos
Técnicas Biossensoriais/métodos , Análise Mutacional de DNA/métodos , DNA/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Ácidos Nucleicos Peptídicos/química , Polimorfismo de Nucleotídeo Único/genética , Tensoativos/química , Cátions , DNA/química , Ácidos Nucleicos Peptídicos/genética , Polímeros/química , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Allogeneic hematopoietic stem cell transplantation is a curative treatment for numerous hematological malignancies. However, acute graft-versus-host disease (aGvHD) is a major complication affecting 40-70% of all transplant patients, whereby the earliest and most frequent presentation is in the skin. MicroRNAs play a role in varied biological process and have been reported as potential biomarkers for aGvHD. More recently, microRNAs have received added attention as circulatory biomarkers that can be detected in biofluids. In this study, we performed global microRNA expression profiling using a discovery cohort of diagnostic cutaneous aGvHD biopsies (n = 5, stages 1-3) and healthy volunteers (n = 4), in order to identify a signature list of microRNAs that could be used as diagnostic biomarkers for cutaneous aGvHD. Candidate microRNAs (n = 8) were then further investigated in a validation cohort of post-HSCT skin biopsies (n = 17), pre-HSCT skin biopsies (n = 6) and normal controls (n = 6) for their association with aGvHD. Expression of let-7c (p = 0.014), miR-503-5p (p = 0.003), miR-365a-3p (p = 0.02), miR-34a-5p (p < 0.001) and miR-34a-3p (p = 0.006) were significantly differentially expressed between groups and significantly associated with survival outcome in post-HSCT patients (miR-503-5p ROC AUC = 0.83 p = 0.021, Log Rank p = 0.003; miR-34a-3p ROC AUC = 0.93, p = 0.003, Log Rank p = 0.004). There was no association with relapse. A statistical interaction between miR-34a-3p and miR-503-5p (p = 0.016) was diagnostic for aGvHD. Expression levels of the miR-34a-5p protein target p53 were assessed in the epidermis of the skin, and an inverse correlation was identified (r2 = 0.44, p = 0.039). Expression of the validated candidate microRNAs was also assessed at day 28 post-HSCT in the sera of transplant recipients, in order to investigate their potential as circulatory microRNA biomarkers. Expression of miR-503-5p (p = 0.001), miR-34a-5p (p = 0.005), and miR-34a-3p (p = 0.004) was significantly elevated in the sera of patients who developed aGvHD versus no-aGvHD (n = 30) and miR-503-5p was associated with overall survival (OS) (ROC AUC = 0.80, p = 0.04, Log Rank p = 0.041). In conclusion, this investigation reports that microRNA expression levels in clinical skin biopsies, obtained at the time of cutaneous aGvHD onset, show potential as diagnostic biomarkers for aGvHD and as predictive biomarkers for OS. In addition, the same microRNAs can be detected in the circulation and show predictive association with post-HSCT outcomes.
RESUMO
The success of hematopoietic stem cell transplantation (HSCT) lies with the ability of the engrafting immune system to remove residual leukemia cells via a graft-versus-leukemia effect (GvL), caused either spontaneously post-HSCT or via donor lymphocyte infusion. GvL effects can also be initiated by allogenic mismatched natural killer cells, antigen-specific T cells, and activated dendritic cells of leukemic origin. The history and further application of this GvL effect and the main mechanisms will be discussed and reviewed in this chapter.
RESUMO
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP-mRNA-miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
RESUMO
Acute graft-versus-host disease (aGvHD) is the most frequent and serious complication following hematopoietic stem cell transplantation (HSCT), with a high mortality rate. A clearer understanding of the molecular pathogenesis may allow for improved therapeutic options or guide personalized prophylactic protocols. Circulating microRNAs are expressed in body fluids and have recently been associated with the etiology of aGvHD, but global expression profiling in a HSCT setting is lacking. This study profiled expression of n = 799 mature microRNAs in patient serum, using the NanoString platform, to identify microRNAs that showed altered expression at aGvHD diagnosis. Selected microRNAs (n = 10) were replicated in independent cohorts of serum samples taken at aGvHD diagnosis (n = 42) and prior to disease onset (day 14 post-HSCT, n = 47) to assess their prognostic potential. Sera from patients without aGvHD were used as controls. Differential microRNAs were investigated in silico for predicted networks and mRNA targets. Expression analysis identified 61 microRNAs that were differentially expressed at aGvHD diagnosis. miR-146a (p = 0.03), miR-30b-5p (p = 0.007), miR-374-5p (p = 0.02), miR-181a (p = 0.03), miR-20a (p = 0.03), and miR-15a (p = 0.03) were significantly verified in an independent cohort (n = 42). miR-146a (p = 0.01), miR-20a (p = 0.03), miR-18 (p = 0.03), miR-19a (p = 0.03), miR-19b (p = 0.01), and miR-451 (p = 0.01) were differentially expressed 14 days post-HSCT in patients who later developed aGvHD (n = 47). High miR-19b expression was associated with improved overall survival (OS) (p = 0.008), whereas high miR-20a and miR-30b-5p were associated with lower rates of non-relapse mortality (p = 0.05 and p = 0.008) and improved OS (p = 0.016 and p = 0.021). Pathway analysis associated the candidate microRNAs with hematological and inflammatory disease. Circulating biofluid microRNAs show altered expression at aGvHD onset and have the capacity to act as prognostic and diagnostic biomarkers. Their differential expression in serum suggests a role for circulatory microRNAs in aGvHD pathology, which warrants further investigation.
RESUMO
Acute graft-versus-host disease (aGvHD) is a major cause of adverse outcome in hematopoietic stem cell transplantation (HSCT), with a high incidence (20-50%). A novel, non-invasive diagnostic test to predict for prevalence and severity would enable improved prophylaxis and reduce morbidity. Circulatory microRNAs (miRNAs) miR-423, miR-199, miR-93*, and miR-377 have previously been associated with aGvHD in post-HSCT patient plasma, but validation is lacking and their expression within extracellular vesicles (EVs) has not been explored. This study replicated elevated serum expression of miR-423 (p < 0.001), miR-199 (p = 0.04), miR-93* (p < 0.001), and miR-377 (p = 0.03) in aGvHD, using a prognostic cohort of day 14 (D14) post-HSCT patient samples (n = 81). Expression also associated with disease severity. Further analysis at aGvHD diagnosis in an independent cohort (n = 65) confirmed high miR-423 (p = 0.02), miR-199 (p = 0.007), and miR-93* (p = 0.004) expression at disease onset. Investigation of expression patterns during early HSCT sequential timepoints (pre-HSCT to D28) identified elevated miRNAs at D7 post-HSCT in all transplant patients. In a novel investigation of miRNA expression in serum EVs (n = 15), miR-423 (p = 0.09), miR-199 (p = 0.008), and miR-93* (p = 0.001) levels were lower at D14 in patients who later developed aGvHD, and this was replicated for miR-423 (p = 0.02) and miR-199 (p = 0.04) (n = 47). Comparing serum to circulating EVs, at D14 patients remaining aGvHD-free had higher expression of miR-423 (p = 0.03), miR-199 (p = 0.009), and miR-93* (p = 0.002) in the EV fraction. Results verify the capacity for circulating miR-423, miR-199, and miR-93* as diagnostic and prognostic aGvHD biomarkers. The novel finding of their differential expression in EVs suggests a potential role in aGvHD etiology.
RESUMO
MicroRNAs are small regulatory molecules that demonstrate useful biomarker potential. They have been recognised in biofluids, where they are protected from degradation by encapsulation into extracellular vesicles (EVs). A number of commercial products are available for the isolation of EVs and their RNA content; however, extensive protocol comparisons are lacking. Furthermore, robust qRT-PCR assessment of microRNA expression within EVs is problematic, as endogenous controls (ECs) previously used in cellular samples may not be present. This study compares EV isolation and RNA extraction methods (EV precipitation reagents, RNA isolation kits and ultracentrifugation) from serum or urine samples and evaluates suitable ECs for incorporation into qRT-PCR analysis. Results were assessed by electron microscopy, nanoparticle tracking analysis and bioanalyzer concentrations. The stability of 8 ECs was compared for both serum and urine EV RNA and retrospectively validated in independent cohorts (serum n=55, urine n=50). The Life Technologies precipitation reagent gave superior serum EV recovery compared to SBI reagent, as assessed by NTA size distribution, increased RNA concentration, and lower small RNA Ct values. Similarly, the Norgen Biotek Urine Exosome RNA Isolation Kit gave improved results for urine EV isolation compared to ultracentrifugation, when determined by the same parameters. The Qiagen miRNeasy™ RNA isolation kit gave suitable serum EV RNA concentrations compared to other kits, as assessed by Bioanalyzer and small RNA qRT-PCR. Small RNAs HY3 (S.D=1.77, CoV=6.2%) and U6 (S.D=2.14, CoV=8.6%) were selected as optimal ECs for serum EV microRNA expression analysis, while HY3 (S.D=1.67, CoV=6.5%) and RNU48 (S.D=1.85, CoV=5.3%) were identified as suitable for urine studies. In conclusion, this study identifies optimal methods for isolation of serum and urine EV RNA, and suitable ECs for normalisation of qRT-PCR studies. Such reports should aid in the standardisation of EV microRNA data, particularly for biomarker studies.
Assuntos
Vesículas Extracelulares/química , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Feminino , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/urina , Microscopia Eletrônica de TransmissãoRESUMO
MicroRNAs (miRNA) have emerged as central regulators of diverse biological processes and contribute to driving pathology in several diseases. Acute graft-versus-host disease (aGvHD) represents a major complication after allogeneic hematopoietic stem cell transplantation, caused by alloreactive donor T cells attacking host tissues leading to inflammation and tissue destruction. Changes in miRNA expression patterns occur during aGvHD, and we hypothesized that we could identify miRNA signatures in target tissues of aGvHD that may potentially help understand the underlying molecular pathology of the disease. We utilized a rat model of aGvHD with transplantation of fully MHC-mismatched T cell depleted bone marrow, followed by infusion of donor T cells. The expression pattern of 423 rat miRNAs was investigated in skin, gut, and lung tissues and intestinal T cells with the NanoString hybridization platform, in combination with validation by quantitative PCR. MHC-matched transplanted rats were included as controls. In the skin, upregulation of miR-34b and downregulation of miR-326 was observed, while in the intestines, we detected downregulation of miR-743b and a trend toward downregulation of miR-345-5p. Thus, tissue-specific expression patterns of miRNAs were observed. Neither miR-326 nor miR-743b has previously been associated with aGvHD. Moreover, we identified upregulation of miR-146a and miR-155 in skin tissue of rats suffering from aGvHD. Analysis of intestinal T cells indicated 23 miRNAs differentially regulated between aGvHD and controls. Two of these miRNAs were differentially expressed either in skin (miR-326) or in intestinal (miR-345-5p) tissue. Comparison of intestinal and peripheral blood T cells indicated common dysregulated expression of miR-99a, miR-223, miR-326, and miR-345-5p. Analysis of predicted gene targets for these miRNAs indicated potential targeting of an inflammatory network both in skin and in the intestines that may further regulate inflammatory cytokine production. In conclusion, comprehensive miRNA profiling in rats suffering from aGvHD demonstrate tissue-specific differences in the expression patterns of miRNA that may not be detected by profiling of peripheral blood T cells alone. These tissue-specific miRNAs may contribute to distinct pathologic mechanisms and could represent potential targets for therapy.
RESUMO
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for numerous hematological malignancies. However, acute graft-versus-host disease (aGVHD) is still the major complication causing mortality. MicroRNAs (miRNAs) play a significant role in inflammation and have potential as prognostic and diagnostic biomarkers. This study investigated the role of two immune-specific miRNAs (miR-146a and miR-155) as biomarkers for aGVHD incidence in the peripheral blood of allo-HSCT patients prior to disease onset. The study showed that miR-146a and its statistical interaction with miR-155 at day +28 were predictive of aGVHD incidence. Interestingly, the expression levels of miR-146a and miR-155 negatively correlated with the transcription factor, SPI1 (PU.1gene) mRNA expression.
RESUMO
AIM: Aberrant DNA methylation patterns are a hallmark of cancer, although the extent to which they underlie cancer development is unknown. In this study, we aimed to determine whether acute lymphoblastic leukemia (ALL) patients in clinical remission retained abnormal DNA methylation patters and whether these were associated with patient outcome. MATERIALS & METHODS: We investigated CpG island methylation of genes known to exhibit hypermethylation in leukemia using quantitative pyrosequencing analysis. RESULTS: Although methylation levels were reduced in remission samples, they remained significantly higher than those seen in healthy controls. This retained methylation was not related to low levels of residual leukemia cells still present at remission. Methylation levels were also stable (or increased) during continuous remission and significantly correlated with long-term survival in adult ALL patients. CONCLUSION: This study determined that abnormalities in DNA methylation are retained during ALL remission and may represent a novel prognostic marker for adult ALL patients.
Assuntos
Metilação de DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Ilhas de CpG , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Indução de Remissão , Adulto JovemRESUMO
Graft-versus-host disease (GVHD) can be a fatal complication of allogeneic stem cell transplantation (allo-HSCT). GVHD can be classified as acute (aGVHD: up to 100 days) or chronic (cGVHD: after 100 days) based on the time-point of disease occurrence. At present there are a limited number of biomarkers available for use in the clinic. Thus, the aim of this research was to evaluate the biomarker potential of the extensively studied Heat Shock Protein 70 family members (HSPA1A/HSPA1B and HSPA1L) at the messenger RNA (mRNA) level in acute and cGVHD patient cohorts. In the skin biopsies, HSPA1L mRNA expression was lower in patients with severe aGVHD (grades II-III) when compared to those with none or low grade aGVHD (grades 0-I) and normal controls. In whole blood, HSPA1L mRNA expression level was significantly (p = 0.008) up-regulated at 28 days post-transplant in cGVHD patients with a significant area under the curve (AUC = 0.773). In addition, HSPA1B expression in whole blood was significantly higher at 3 months post-transplant in both the aGVHD grade II-III (p = 0.012) and cGVHD (p = 0.027) patients. Our initial results in this small cohort show that quantifying HSPA1L mRNA expression in the whole blood of allo-HSCT patients at day 28 post-allo-HSCT may be a useful predictive biomarker for cGVHD.
Assuntos
Doença Enxerto-Hospedeiro/diagnóstico , Proteínas de Choque Térmico HSP70/metabolismo , Pele/imunologia , Transplante de Células-Tronco , Doença Aguda , Aloenxertos/imunologia , Biomarcadores/metabolismo , Biópsia , Doença Crônica , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , Prognóstico , RNA Mensageiro/genética , Pele/patologiaRESUMO
BACKGROUND: Regulatory T cells (Tregs) effectively ameliorate graft-versus-host disease (GVHD). The mechanisms underlying Treg therapeutic effect on GVHD are not fully elucidated. This study investigates whether Treg prevention of GVH tissue damage is associated with blocking CD8 effector T-cell tissue invasion, a question not yet addressed in humans. METHOD: Tissue-infiltrating T cells and histopathology scores were detected using an in vitro human GVHD skin explant model, together with immunohistochemistry, cytometric bead array, functional adhesion and migration assays, flow cytometry, and quantitative real-time polymerase chain reaction. RESULTS: Treg intervention during priming significantly decreased effector T-cell infiltration into target tissue (P<0.01) resulting in a striking reduction in the histopathology score of tissue injury (P<0.0001). These results were coupled with reduced CXCR3 and cutaneous lymphocyte antigen expression by effector T cells, together with decreased CXCL10 and CXCL11 expression in target tissue. Treg intervention also impaired the functional interaction of CXCR3 and cutaneous lymphocyte antigen with their specific ligands (P<0.01) and suppressed the secretion of CXCL9, CXCL10, and interferon-γ (P<0.01, P<0.05, and P<0.001, respectively). Late addition of Tregs into the effector phase abolished their ability to suppress effector T-cell tissue invasion, resulting in a total loss of their ability to ameliorate GVH tissue damage. CONCLUSION: Preventing effector T-cell tissue invasion is a critical mechanistic event leading to Treg attenuation of GVH tissue damage. This therapeutic effect is associated with a failure of CD8 T cells to increase tissue homing receptors after allo-stimulation, together with a breakdown of interferon-γ-induced chemoattractant expression in the target tissue.
Assuntos
Quimiotaxia de Leucócito , Doença Enxerto-Hospedeiro/prevenção & controle , Reação Enxerto-Hospedeiro/imunologia , Pele/imunologia , Linfócitos T Reguladores/imunologia , Antígenos Ly/metabolismo , Adesão Celular , Células Cultivadas , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Técnicas de Cocultura , Citometria de Fluxo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Pele/patologia , Técnicas de Cultura de TecidosRESUMO
BACKGROUND: Interleukin-7 (IL-7) is a hematopoietic cytokine essential for T-cell development in the thymus and for the maintenance of peripheral T cells. A previous study of single nucleotide polymorphisms in the exons of IL-7 receptor α-chain (IL-7Rα) in a Danish cohort of patients undergoing allogeneic stem-cell transplantation (SCT) identified donor genotype GG at rs1494555 as a risk factor for treatment-related mortality (TRM) after SCT. METHODS: In this validation study, 116 British and French SCT patients and their donors were investigated by sequence-specific primer polymerase chain reaction. RESULTS: Both donor rs1494555GG genotype and the tightly coupled rs1494558TT genotype were significantly associated with grade 3 to 4 acute graft versus host disease. Although both genotypes tended to be associated with increased TRM, this did not translate into altered overall survival. CONCLUSION: The present data indicate that the IL-7 pathway is associated with alloreactivity in SCT, which is in line with the previously observed association between IL-7Rα single nucleotide polymorphisms and TRM.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-7/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genótipo , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Transplante HomólogoRESUMO
BACKGROUND: The major histocompatibility complex (MHC) is the most important genomic region that contributes to the risk of graft versus host disease (GVHD) after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling. METHODOLOGY/PRINCIPAL FINDINGS: To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR), to analyze the expression of MHC, natural killer complex (NKC), and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays. CONCLUSIONS/SIGNIFICANCE: We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients.