Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Inflammopharmacology ; 32(5): 2649-2680, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126569

RESUMO

Since the start of the pandemic, considerable advancements have been made in our understanding of the effects of SARS-CoV-2 infection and the associated COVID-19 on the hepatic system. There is a broad range of clinical symptoms for COVID-19. It affects multiple systems and has a dominant lung illness depending on complications. The progression of COVID-19 in people with pre-existing chronic liver disease (CLD) has also been studied in large multinational groups. Notably, SARS-CoV-2 infection is associated with a higher risk of hepatic decompensation and death in patients with cirrhosis. In this review, the source, composition, mechanisms, transmission characteristics, clinical characteristics, therapy, and prevention of SARS-CoV-2 were clarified and discussed, as well as the evolution and variations of the virus. This review briefly discusses the causes and effects of SARS-CoV-2 infection in patients with CLD. As part of COVID-19, In addition, we assess the potential of liver biochemistry as a diagnostic tool examine the data on direct viral infection of liver cells, and investigate potential pathways driving SARS-CoV-2-related liver damage. Finally, we explore how the pandemic has had a significant impact on patient behaviors and hepatology services, which may increase the prevalence and severity of liver disease in the future. The topics encompassed in this review encompass the intricate relationships between SARS-CoV-2, liver health, and broader health management strategies, providing valuable insights for both current clinical practice and future research directions.


Assuntos
COVID-19 , Hepatopatias , SARS-CoV-2 , Humanos , COVID-19/complicações , Hepatopatias/diagnóstico , Hepatopatias/virologia , Hepatopatias/etiologia , Fígado/patologia , Fígado/virologia
2.
Inflammopharmacology ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39406981

RESUMO

As of the 7th of July 2024, 775,754,322 confirmed cases of COVID-19, including 7,053,902 deaths worldwide, had been reported to the WHO (World Health Organization). Nevertheless, untill the 15th of July 2024, a total of 13,578,710,228 vaccine doses had been administered, with almost no country spared from COVID-19 attacks. The pathophysiology of this virus is complicated, and several symptoms require a deep understanding of the actual mechanisms. It is unclear why some patients develop severe symptoms while others do not, although literature suggests a role for vitamin D. Vitamin D plays a crucial role in the infection or in ameliorating the severity of symptoms. The mechanism of action of vitamin D and vitamin D deficiency (VDD) is well understood. VDD is associated with increased hospitalization of severely ill patients and increased levels of COVID-19-caused mortality. Recent studies suggest that vitamin D levels and genetic variations in the vitamin D receptor (VDR) gene significantly impact the severity and outcomes of COVID-19, especially in the infections caused by Delta and Omicron variants. Furthermore, VDD causes immune system dysregulation upon infection with SARS-CoV-2, indicating that vitamin D sufficiency is crucial in fighting against COVID-19 infection. The therapeutic effect of vitamin D raises interest in its potential role as a prophylactic and treatment adjunct. We evaluate the immunomodulatory effects of vitamin D and its ability to enhance the efficacy of new antiviral drugs like molnupiravir and paxlovid against SARS-CoV-2. This review discusses the role of vitamin D sufficiency and VDD in COVID-19 initiation and progression, emphasizing the molecular mechanisms by which vitamin D exerts its actions as a proactive step for the next pandemic. However, there is still no clear evidence of vitamin D's impact on prevention and treatment, leading to contradictory findings. Therefore, large-scale randomized trials are required to reach a definitive conclusion. A bibliometric analysis of publications related to vitamin D, immunity, and COVID-19 revealed a significant increase in research activity in this area, particularly in 2020-2024, underscoring the growing recognition of vitamin D's potential role in the context of the pandemic.

3.
J Enzyme Inhib Med Chem ; 38(1): 2202357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37092260

RESUMO

In this article, emulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a-3g) in an attempt to improve their biological availability and antiviral activity. Next, both cytotoxicity and anti-SARS-CoV-2 activities of the examined compounds loaded EMLs (F3a-g) were assessed in Vero E6 cells via MTT assay to calculate the CC50 and inhibitory concentration 50 (IC50) values. The most potent 3e-loaded EMLs (F3e) elicited a selectivity index of 18 with an IC50 value of 0.73 µg/mL. Moreover, F3e was selected for further elucidation of a possible mode of action where the results showed that it exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition. Besides, molecular docking and MD simulations towards the SARS-CoV-2 Mpro were performed. Finally, a structure-activity relationship (SAR) study focussed on studying the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide in addition to compound contraction on SARS-CoV-2 activity.HighlightsEmulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a-3g).The most potent 3e-loaded EMLs (F3e) showed an IC50 value of 0.73 µg/mL against SARS-CoV-2.F3e exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition.Molecular docking, molecular dynamics (MD) simulations, and MM-GBSA calculations were performed.Structure-activity relationship (SAR) study was discussed to study the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide on the anti-SARS-CoV-2 activity.


Assuntos
COVID-19 , Nanopartículas , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Antivirais/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteases
4.
Microb Pathog ; 171: 105747, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36064102

RESUMO

Human papillomavirus (HPV) is the most prevalent sexually transmitted disease in the world. Even though preventive vaccines against HPV are effective, the effective treatment of HPV infections is much less satisfactory due to multi-drug resistance and secondary adverse effects. Nanotechnology was employed for the delivery of anti-cancer drugs to increase the effectiveness of the treatment and minimize the side effects. Nanodelivery of both preventive and therapeutic HPV vaccines has also been studied to boost vaccine efficacy. Overall, such developments suggest that the nanoparticle-based vaccine might emerge as the most cost-effective way to prevent and treat HPV cancer, assisted or combined with another nanotechnology-based therapy. This review focuses on the current knowledge on pathogenesis and vaccines against HPV, highlighting the current value and perspective regarding the widespread diffusion of HPV vaccines-based nanomaterials. The ongoing advancements in the design of vaccines-based nanomaterials are expanding their therapeutic roles against HPV.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Nanotecnologia , Papillomaviridae
5.
Molecules ; 22(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261103

RESUMO

The fast development of multi-drug resistant (MDR) organisms increasingly threatens global health and well-being. Plant natural products have been known for centuries as alternative medicines that can possess pharmacological characteristics, including antimicrobial activities. The antimicrobial activities of essential oil (Calli oil) extracted from the Calligonum comosum plant by hydro-steam distillation was tested either alone or when combined with lawsone, a henna plant naphthoquinone, against MDR microbes. Lawsone showed significant antimicrobial activities against MDR pathogens in the range of 200-300 µg/mL. Furthermore, Calli oil showed significant antimicrobial activities against MDR bacteria in the range of 180-200 µg/mL, Candida at 220-240 µg/mL and spore-forming Rhizopus fungus at 250 µg/mL. Calli oil's inhibition effect on Rhizopus, the major cause of the lethal infection mucormycosis, stands for 72 h, followed by an extended irreversible white sporulation effect. The combination of Calli oil with lawsone enhanced the antimicrobial activities of each individual alone by at least three-fold, while incorporation of both natural products in a liposome reduced their toxicity by four- to eight-fold, while maintaining the augmented efficacy of the combination treatment. We map the antimicrobial activity of Calli oil to its major component, a benzaldehyde derivative. The findings from this study demonstrate that formulations containing essential oils have the potential in the future to overcome antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Naftoquinonas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Traqueófitas/química , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Candida/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Farmacorresistência Fúngica Múltipla , Sinergismo Farmacológico , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Lipossomos , Testes de Sensibilidade Microbiana , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Rhizopus/efeitos dos fármacos , Veias Umbilicais/citologia
6.
Clin Exp Pharmacol Physiol ; 41(6): 437-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24341387

RESUMO

The aim of the present study was to compare the potential of ceftobiprole, dalbavancin, daptomycin, tigecycline, linezolid and vancomycin to achieve their requisite pharmacokinetic/pharmacodynamic (PK/PD) targets against methicillin-resistant Staphylococcus aureus isolates collected from intensive care unit (ICU) settings. Monte Carlo simulations were carried out to simulate the PK/PD indices of the investigated antimicrobials. The probability of target attainment (PTA) was estimated at minimum inhibitory concentration values ranging from 0.03 to 32 µg/mL to define the PK/PD susceptibility breakpoints. The cumulative fraction of response (CFR) was computed using minimum inhibitory concentration data from the Canadian National Intensive Care Unit study. Analysis of the simulation results suggested the breakpoints of 4 µg/mL for ceftobiprole (500 mg/2 h t.i.d.), 0.25 µg/mL for dalbavancin (1000 mg), 0.12 µg/mL for daptomycin (4 mg/kg q.d. and 6 mg/kg q.d.) and tigecycline (50 mg b.i.d.), and 2 µg/mL for linezolid (600 mg b.i.d.) and vancomycin (1 g b.i.d. and 1.5 g b.i.d.). The estimated CFR were 100, 100, 70.6, 88.8, 96.5, 82.4, 89.4, and 98.3% for ceftobiprole, dalbavancin, daptomycin (4 mg/kg/day), daptomycin (6 mg/kg/day), linezolid, tigecycline, vancomycin (1 g b.i.d.) and vancomycin (1.5 g b.i.d.), respectively. In conclusion, ceftobiprole and dalbavancin have the highest probability of achieving their requisite PK/PD targets against methicillin-resistant Staphylococcus aureus isolated from ICU settings. The susceptibility predictions suggested a reduction of the vancomycin breakpoint to 1 µg/mL.


Assuntos
Antibacterianos/farmacologia , Simulação por Computador , Infecção Hospitalar/microbiologia , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Acetamidas/farmacologia , Cefalosporinas/farmacologia , Daptomicina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Unidades de Terapia Intensiva , Linezolida , Minociclina/análogos & derivados , Minociclina/farmacologia , Modelos Biológicos , Método de Monte Carlo , Oxazolidinonas/farmacologia , Teicoplanina/análogos & derivados , Teicoplanina/farmacologia , Tigeciclina , Vancomicina/farmacologia
7.
Antibiotics (Basel) ; 13(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39061268

RESUMO

In the present study, a total of 720 samples were collected from retail raw meat from 13 upazilas in Sylhet District, Bangladesh, of which 225 samples were from cattle meat, 210 samples were from goat meat, and 285 samples were from chicken meat. Salmonella enterica serovars Typhimurium and Enteritidis were screened for extended-spectrum ß-lactamase (ESBL) genes using multiplex PCR. Among the 720 samples, Salmonella spp. was detected in 28.06% (202 out of 720) of the samples, with S. Enteritidis and S. Typhimurium were identified in 11.53% (83 out of 720) and 12.22% (88 out of 720) of the samples, respectively. It was found that all Salmonella enterica serovars isolated from cattle meat displayed multidrug resistance (MDR) based on antimicrobial susceptibility testing. Notably, a significant proportion of S. Enteritidis isolates and all S. Typhimurium isolates from goat meat demonstrated complete resistance to multiple drugs (ampicillin, cefuroxime, and ceftazidime). Regarding chicken meat, out of 89 isolates encompassing both S. Typhimurium and S. Enteritidis, 57 isolates (64.04%) exhibited MDR. Additionally, blaCTX-M-1 exhibited the highest occurrence at 15.69% for S. Typhimurium and 7.89% for S. Enteritidis in chicken meat. Moreover, blaCTX-M-9 was only detected at 3.92% for S. Enteritidis in chicken meat. Furthermore, blaOXA had the highest prevalence rate of 19.04% for S. Enteritidis and 25.80% for S. Typhimurium in cattle meat, followed by chicken meat. These findings highlight the urgency for monitoring ESBL-producing Salmonella in retail raw meat and the need for strict measure to manage antibiotic use to prevent the spread of multidrug-resistant and ESBL-producing Salmonella strains, thereby protecting humans and reducing public health risks.

8.
Int J Pharm ; 646: 123385, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37678473

RESUMO

The evolution of a safe and effective therapeutic system to conquer SAR-CoV-2 infection deemed to be a crucial worldwide demand. Curcumin (CUR) is a phytomedicinal polyphenolic drug that exhibited a well-reported anti-SAR-CoV-2. However, the therapeutic activity of CUR is hindered by its poor intestinal permeability and diminished aqueous solubility. Therefore, this study strived to develop D-alpha-tocopheryl polyethylene glycol succinate (TPGS) bilosomes (TPGS-Bs) adopting 23 full factorial designs to improve solubility and intestinal permeability of CUR, hence boosting its anti-SARS-CoV-2 activity. Eight experimental runs were attained considering three independent variables: soybean phosphatidylcholine amount (mg) (SPC amount), bile salt amount (mg) (BS amount), and TPGS amount (mg). The optimum formula (F4) exhibited EE % (88.5 ± 2.4 %), PS (181.5 ± 21.6 nm), and ZP (-34.5 ± 3.7 mV) with desirability value = 0.739 was picked as an optimum formula. Furthermore, the optimum formula (F4) was extra coated with chitosan (CS) to improve permeability and anti-SAR-CoV-2 activity. Caco-2 cell uptake after 2 hr revealed the superiority of CS-F4 and F4 by 6 and 5 folds relative to CUR dispersion, respectively. Furthermore, CS-F4 exhibited a significantly higher anti-SARS-CoV-2 activity with IC50 (0.24 µg/ml) by 8.3 times than F4 (1.99 µg/ml). Besides, the mechanistic study demonstrated that the two formulae imparted antiviral activity by inhibiting the spike protein by virucidal potentialities. In addition, the conducted molecular docking and MD simulations towards the SARS-CoV-2 Mpro enzyme confirmed the interaction of CUR with key residues of the virus enzymes. Based on the preceded, CS-F4 could be assumed to be used to effectively eradicate SARS-CoV-2 infection.

9.
J Antimicrob Chemother ; 67(7): 1706-11, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467630

RESUMO

OBJECTIVES: This study assessed the pharmacodynamics of ceftaroline against penicillin-intermediate and penicillin-resistant Streptococcus pneumoniae with elevated MICs of ceftaroline using an in vitro pharmacodynamic model. METHODS: Nine isolates of S. pneumoniae, including one penicillin-susceptible isolate, one penicillin-intermediate isolate and seven penicillin-resistant isolates, were tested. The pharmacodynamic model was inoculated with a concentration of 1 × 10(6) cfu/mL and ceftaroline was dosed twice daily (at 0 and 12 h) to simulate the fC(max) (maximum free concentration in serum) and t(1/2) (half-life in serum) obtained after 600 mg intravenous doses every 12 h (fC(max), 16 mg/L; t(1/2), 2.6 h). Ceftaroline was compared with ceftriaxone dosed once daily to simulate the fC(max) and t(1/2) obtained after a 1 g dose (fC(max), 18 mg/L; t(1/2), 8.0 h). Samples were collected over 24 h to assess viable growth and possible changes in ceftaroline MICs over time. RESULTS: Ceftaroline fT(>MIC) (time of free serum concentration over the MIC) of 100% (ceftaroline MICs, ≤ 0.5 mg/L) was bactericidal (≥ 3 log(10) killing) against all isolates at 6 h and completely eradicated all organisms at 12 and 24 h. No bacterial regrowth occurred over the study period and no changes in ceftaroline MICs were observed. Upon ceftriaxone exposure, S. pneumoniae isolates with ceftriaxone MICs of 0.12 and 0.25 mg/L were eradicated, but isolates with ceftriaxone MICs of 1-8 mg/L resulted in initial bacterial reduction at 6 h with organism regrowth at 12 h and no reduction in organism concentration, relative to the starting inoculum, at 24 h. CONCLUSIONS: Ceftaroline fT(>MIC) of 100% (ceftaroline MICs, ≤ 0.5 mg/L) was bactericidal (≥ 3 log(10) killing) and eradicated all S. pneumoniae at 12 and 24 h with no regrowth.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Resistência às Penicilinas , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/isolamento & purificação , Antibacterianos/farmacocinética , Cefalosporinas/farmacocinética , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Teóricos , Ceftarolina
10.
Life Sci ; 305: 120778, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792181

RESUMO

AIMS: Breast cancer (BC) is the third leading cause of death among other cancer types. Worldwide, it is the most common harmful disease in women, representing 1/4 of all cancers. Treatment of BC remains an ongoing challenge to most researchers. Understanding how cancer cells differ from normal cells can enhance drug targeting and overall disease progression. Endocytosis is a major physiological process modified in cancer cells and affects the cellular uptake of chemotherapeutic agents. MCF-7 breast cancer cells exhibit constitutive macropinocytic activity in comparison to normal non-macropinocytic MCF-10A breast cells. Therefore, we hypothesized that blocking the macropinocytosis mechanism in MCF-7 cells may inhibit the cancer progression while maintaining the safety of normal cells. MAIN METHODS: Using nano-precipitation technique, paclitaxel-PLGA-NPs were successfully prepared in the size range and charge required to opt for macropinocytosis in MCF-7 cells. KEY FINDINGS: Uptake and endocytosis inhibitor assays indicated that the developed NPs acquired size and surface charges that efficiently target macropinocytosis of MCF-7 cells. Paclitaxel-loaded PLGA-NPs showed higher efficacy against MCF-7 cells, while providing no toxicity on normal MCF-10A cells. Metabolomics analysis indicated the nutrients deprivation because of occupying the macropinocytosis. However, treatment of fresh MCF-7 cancer cells by metabolites secreted from PLGA-NPs-treated MCF-7 cells showed a potential metastatic activity. Thus, co- administration with an anti-metastatic drug is advised. SIGNIFICANCE: Collectively, adjusting the size and surface characteristics of a drug can critically control its cellular uptake, affecting the efficacy of drugs and the microenvironment of cancer cells.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Microambiente Tumoral
11.
Sci Rep ; 12(1): 15235, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075939

RESUMO

Resveratrol (RSV), a non-flavonoid stilbene polyphenol, possesses anti-carcinogenic activities against all the major stages of cancer. Zein nanoparticles (ZN NPs) have been utilized successfully in delivery of variant therapeuticals by virtue of their histocompatible nature. The goal of this work was to comparatively explore the antiproliferative, pro-apoptotic and oxidative stress potentials of RSV-ZN NPs versus RSV against human colorectal carcinoma HCT-116 cells. ZN-RSV NPs were developed and assayed for particle size analysis and RSV diffusion. The selected formula obtained 137.6 ± 8.3 nm as mean particle size, 29.4 ± 1.8 mV zeta potential, 92.3 ± 3.6% encapsulation efficiency. IC50 of the selected formula was significantly lower against HCT-116 cells versus Caco-2 cells. Also, significantly enhanced cellular uptake was generated from RSV-ZN NPs versus free RSV. Enhanced apoptosis was concluded due to increased percentage cells in G2-M and pre-G1 phases. The pro-apoptotic potential was explained by caspase-3 and cleaved caspase-3 increased mRNA expression in addition to NF-κB and miRNA125b decreased expression. Biochemically, ZN-RSV NPs induced oxidative stress as demonstrated by enhanced reactive oxygen species (ROS) generation and endothelial nitric oxide synthase (eNOS) isoenzyme increased levels. Conclusively, ZN-RSV NPs obtained cell cycle inhibition supported with augmented cytotoxicity, uptake and oxidative stress markers levels in HCT-116 tumor cells in comparison with free RSV. These results indicated intensified chemopreventive profile of RSV due to effective delivery utilizing ZN nano-dispersion against colorectal carcinoma HCT-116 cells.


Assuntos
Neoplasias Colorretais , Nanopartículas , Zeína , Apoptose , Células CACO-2 , Caspase 3/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Humanos , Oxidantes/farmacologia , Resveratrol/farmacologia , Zeína/farmacologia
12.
J Antimicrob Chemother ; 66(6): 1301-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21429940

RESUMO

BACKGROUND: This study assessed the pharmacodynamics of ceftaroline against methicillin-resistant Staphylococcus aureus (MRSA), heteroresistant (h) vancomycin-intermediate S. aureus (hVISA), VISA and vancomycin-resistant S. aureus (VRSA) using an in vitro model. METHODS: Two methicillin-susceptible S. aureus (MSSA), one community-associated (CA)-MRSA, one healthcare-associated (HA)-MRSA, one hVISA, three VISA and two VRSA were studied. The pharmacodynamic model was inoculated with a concentration of 1 × 106 cfu/mL and ceftaroline dosed every 12 h (at 0 and 12 h) to simulate the ƒC(max) and t(½) obtained after administering 600 mg intravenously every 12 h (ƒC(max), 16 mg/L; t(½), 2.6 h). Samples were collected over 24 h to assess viable growth and changes in ceftaroline MIC over time. RESULTS: Ceftaroline ƒT(> MIC) of ≥ 92% (ceftaroline MICs, ≤ 1 mg/L) was bactericidal (≥ 3 log10 killing) against MSSA, CA-MRSA, HA-MRSA, hVISA, VISA and VRSA at 12 and 24 h. No bacterial regrowth occurred over the study period and no change in ceftaroline MIC was observed. CONCLUSIONS: Ceftaroline ƒT(> MIC) of ≥ 92% (ceftaroline MICs, ≤ 1 mg/L) was bactericidal (≥ 3 log10 killing) against MSSA, CA-MRSA, HA-MRSA, hVISA, VISA and VRSA at 12 and 24 h.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Resistência a Vancomicina , Antibacterianos/farmacocinética , Cefalosporinas/farmacocinética , Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , Humanos , Técnicas In Vitro , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Ceftarolina
13.
Sci Rep ; 11(1): 8435, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875719

RESUMO

Expansion of COVID-19 worldwide increases interest in unraveling genomic variations of novel SARS-CoV-2 virus. Metadata of 408,493 SARS-CoV-2 genomes submitted to GISAID database were analyzed with respect to genomic clades and their geographic, age, and gender distributions. Of the currently known SARS-CoV-2 clades, clade GR was the most prevalent worldwide followed by GV then GH. Chronological analysis revealed expansion in SARS-CoV-2 clades carrying D614G mutations with the predominance of the newest clade, GV, in the last three months. D614G clades prevail in countries with more COVID-19 cases. Of them, the clades GH and GR were more frequently recovered from severe or deceased COVID-19 cases. In contrast, G and GV clades showed a significantly higher prevalence among asymptomatic patients or those with mild disease. Metadata analysis showed higher (p < 0.05) prevalence of severe/deceased cases among males than females and predominance of GR clade in female patients. Furthermore, severe disease/death was more prevalent (p < 0.05) in elderly than in adults/children. Higher prevalence of the GV clade in children compared to other age groups was also evident. These findings uniquely provide a statistical evidence on the adaptation-driven evolution of SARS-CoV-2 leading to altered infectivity, virulence, and mortality.


Assuntos
COVID-19/patologia , SARS-CoV-2/genética , Adulto , Fatores Etários , Idoso , COVID-19/epidemiologia , COVID-19/virologia , Criança , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Bases de Dados Factuais , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , América do Norte/epidemiologia , SARS-CoV-2/isolamento & purificação , Fatores Sexuais , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética
14.
Curr Cancer Drug Targets ; 21(8): 666-675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077346

RESUMO

The field of cancer research has massively grown in recent decades, leading to a better understanding of the underlying causes and greatly improving the therapeutic approaches. Breast cancer (BC) is the third leading cause of mortality among all cancers and the most common malignant disease in women worldwide, representing one in four of all cancers in women. The crosstalk between cancer cells and the surrounding microenvironment is crucial for tumor progression and metastatic process. Tumor cells communicate not only through classical paracrine signaling mechanisms, including cytokines, chemokines, growth factors, but also through "exosomes". Exosomes are nano-vesicles that are released by various types of cells. Over the last decade, researchers have been attracted by the role of exosomes in breast cancer. It has been proven that exosomes influence major tumor-related pathways, including invasion, migration, epithelial-to-mesenchymal transition (EMT), metastasis, and drug resistance. Additionally, exosomes play important roles in clinical applications. Several studies have demonstrated the potential applications of exosomes in cancer therapy and diagnosis. Furthermore, exosomes have been engineered to function as nano-delivery systems of chemotherapeutic drugs. They can also be designed as vaccines to trigger the patient's immune system. This review discusses the recent progress regarding the use of exosomes as drug delivery systems, therapeutic agents, biomarkers, and vaccines against breast cancer.


Assuntos
Neoplasias da Mama , Exossomos , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Humanos , Microambiente Tumoral
15.
Diseases ; 8(2)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443811

RESUMO

Malaria remains the biggest threat to public health, especially among pregnant women and young children in sub-Saharan Africa. Prompt and accurate diagnosis is critical for effective case management and detection of drug resistance. Conventionally, microscopy and rapid diagnostic tests (RDTs) are the tools of choice for malaria diagnosis. RDTs are simple to use and have been extensively used in the diagnosis of malaria among travelers to malaria-endemic regions, routine case management, and surveillance studies. Most RDTs target the histidine-rich protein (PfHRP) which is exclusively found in Plasmodium falciparum and a metabolic enzyme Plasmodium lactate dehydrogenase (pLDH) which is common among all Plasmodium species. Other RDTs incorporate the enzyme aldolase that is produced by all Plasmodium species. Recently, studies have reported false-negative RDTs primarily due to the deletion of the histidine-rich protein (pfhrp2 and pfhrp3) genes in field isolates of P. falciparum. Herein, we review published literature to establish pfhrp2/pfhrp3 deletions, the extent of these deletions in different geographical regions, and the implication in malaria control. We searched for publications on pfhrp2/pfhrp3 deletions and retrieved all publications that reported on this subject. Overall, 20 publications reported on pfhrp2/pfhrp3 deletions, and most of these studies were done in Central and South America, with very few in Asia and Africa. The few studies in Africa that reported on the occurrence of pfhrp2/pfhrp3 deletions rarely evaluated deletions on the flanking genes. More studies are required to evaluate the existence and extent of these gene deletions, whose presence may lead to delayed or missed treatment. This information will guide appropriate diagnostic approaches in the respective areas.

16.
Pathogens ; 9(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325980

RESUMO

Emerging and re-emerging viral diseases are of great public health concern. The recent emergence of Severe Acute Respiratory Syndrome (SARS) related coronavirus (SARS-CoV-2) in December 2019 in China, which causes COVID-19 disease in humans, and its current spread to several countries, leading to the first pandemic in history to be caused by a coronavirus, highlights the significance of zoonotic viral diseases. Rift Valley fever, rabies, West Nile, chikungunya, dengue, yellow fever, Crimean-Congo hemorrhagic fever, Ebola, and influenza viruses among many other viruses have been reported from different African countries. The paucity of information, lack of knowledge, limited resources, and climate change, coupled with cultural traditions make the African continent a hotspot for vector-borne and zoonotic viral diseases, which may spread globally. Currently, there is no information available on the status of virus diseases in Africa. This systematic review highlights the available information about viral diseases, including zoonotic and vector-borne diseases, reported in Africa. The findings will help us understand the trend of emerging and re-emerging virus diseases within the African continent. The findings recommend active surveillance of viral diseases and strict implementation of One Health measures in Africa to improve human public health and reduce the possibility of potential pandemics due to zoonotic viruses.

17.
Int J Nanomedicine ; 15: 1095-1100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110009

RESUMO

BACKGROUND: Echinococcus granulosus is causative agent of cystic echinococcosis (CE), which has a cosmopolitan distribution. The current methods for the treatment of human CE include surgery. Therefore, the development of new scolicidal agents with low side effects and more efficacies is an urgent need. PURPOSE: The present study aimed to compare the scolicidal efficacies of silver, iron, copper, silica and zinc oxide nanoparticles (NPs) against hydatid cyst protoscolices in vitro. METHODS: Hydatid cysts of sheep liver and lung were collected. The cyst fluid containing protoscolices was aspirated aseptically. The scolicidal activities of the silver, iron, copper, silica and zinc nanoparticles (Ag-NP, Fe-NP, Cu-NP, Si-NP and Zn-NP) were tested at different concentrations of 0.25, 0.5 and 1 mg/mL following 10, 30 and 60 min of incubation in triplicate. Viability of protoscolices was confirmed by 0.1% eosin staining. RESULTS: Results showed that Ag-NPs at all concentrations tested had the highest scolicidal effect. Ag-NPs at 1 mg/mL concentration after 60 min of exposure time showed 80% mortality rate. Si-NPs had the high scolicidal activity at 1 mg/mL concentration (52.33%), Cu-NPs at 0.5 mg/mL concentration (41%), Fe-NPs at 1mg/mL concentration (28%) and Zn-NPs at concentration of 1mg/mL after 60 mins (15.67%). CONCLUSION: The findings of the present study showed that Ag-NPs, Fe-NPs, Cu-NPs, Si-NPs and Zn-NPs had potent scolicidal effects and that Ag-NPs are recommended as effective scolicidal agents. However, further in vivo studies are required to evaluate the efficacy of these nanoparticles.


Assuntos
Anticestoides/farmacologia , Equinococose/tratamento farmacológico , Echinococcus granulosus/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Animais , Anticestoides/química , Equinococose/parasitologia , Equinococose Hepática/tratamento farmacológico , Equinococose Hepática/parasitologia , Equinococose Pulmonar/tratamento farmacológico , Equinococose Pulmonar/parasitologia , Echinococcus granulosus/patogenicidade , Nanopartículas Metálicas/química , Ovinos
18.
Vet Sci ; 7(2)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235414

RESUMO

The current study was conducted to isolate and identify multidrug-resistant Staphylococcus aureus (MDR-SA) from mastitis milk samples and to determine their antimicrobial susceptibility pattern. A total of 48 bovine mastitis (BM) milk samples were collected from different parts of the Rangpur division, Bangladesh. After the collection of milk samples, mastitis was confirmed using the California mastitis test. Isolation and identification of Staphylococcus aureus were performed using conventional cultural and biochemical tests as well as using molecular methods of PCR. Nucleotide sequence analysis of the 23S rRNA gene of Staphylococcus aureus was determined. The antibiogram of the isolated bacteria was conducted using the disc diffusion method. Phylogenetic analysis of 23S rRNA was done using MEGA 7, ClustalW multiple sequence alignment, and NCBI-BLAST tools, where the sequence of the isolate showed 98% to 99% identity. Antibiogram test using 15 antimicrobial agents showed that all of the Staphylococcus aureus isolates were classified as multidrug-resistant (MDR). It was found that the isolates were resistant to tetracycline, novobiocin, methicillin, vancomycin, and cephradine, and the isolates were sensitive to ciprofloxacin, azithromycin, norfloxacin, levofloxacin, gentamicin, and amoxicillin. The detection of MDR-SA in mastitis milk is alarming and represents a great public health concern. The findings of the present study help identify Staphylococcus aureus at the molecular level using 23S rRNA gene sequencing and will help select the appropriate and effective antimicrobial agent to control BM in the northern part of Bangladesh.

19.
Pathogens ; 9(3)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182918

RESUMO

Multidrug resistant (MDR) Salmonella are a leading cause of foodborne diseases and serious human health concerns worldwide. In this study we detected MDR Salmonella in broiler chicken along with the resistance genes and class 1 integron gene intl1. A total of 100 samples were collected from broiler farms comprising 50 cloacal swabs, 35 litter and 15 feed samples. Overall prevalence of Salmonella was 35% with the highest detected in cloacal swabs. Among the Salmonella, 30 isolates were confirmed as S. enterica serovar Typhimurium using molecular methods of PCR. Disk diffusion susceptibility test revealed that all the Salmonella were classified as MDR with the highest resistance to tetracycline (97.14%), chloramphenicol (94.28%), ampicillin (82.85%) and streptomycin (77.14%). The most prevalent resistance genotypes were tetA (97.14%), floR (94.28%), blaTEM-1 (82.85%) and aadA1 (77.14%). In addition, among the MDR Salmonella, 20% were positive for class 1 integron gene (intl1). As far as we know, this is the first study describing the molecular basis of antibiotic resistance in MDR Salmonella from broiler farms in Bangladesh. In addition to tetA, floR, blaTEM-1, aadA1 and intl1 were also detected in the isolated MDR Salmonella. The detection of MDR Salmonella in broiler chicken carrying intl1 is of serious public health concern because of their zoonotic nature and possibilities to enter into the food chain.

20.
J Antimicrob Chemother ; 64(2): 364-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19454524

RESUMO

BACKGROUND: This study compared the pharmacodynamics of ceftobiprole and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) using an in vitro model. METHODS: Two methicillin-susceptible S. aureus (MSSA), two community-associated (CA)-MRSA, one healthcare-associated (HA)-MRSA, three VISA and two VRSA were studied. The pharmacodynamic model was inoculated with a concentration of 1 x 10(6) cfu/mL and ceftobiprole dosed every 8 h (at 0, 8 and 16 h) to simulate the fC(max) and t(1/2) obtained after 500 mg intravenous (iv) every 8 h dosing (fC(max,) 30 mg/L; t(1/2,) 3.5 h). Vancomycin was dosed every 12 h (at 0 and 12 h) to simulate fC(max) and t(1/2) obtained after 1 g iv every 12 h dosing (fC(max), 20 mg/L; t(1/2), 8 h). Samples were collected over 24 h to assess viable growth. RESULTS: Ceftobiprole T > MIC of > or =100% (ceftobiprole MICs, < or =2 mg/L) was bactericidal (> or =3 log(10) killing) against MSSA, CA-MRSA, HA-MRSA, VISA and VRSA at 16 and 24 h. Vancomycin fAUC(24)/MIC of 340 (vancomycin MIC, 1 mg/L for MSSA and MRSA) resulted in a 1.8-2.6 log(10) reduction in colony count at 24 h. Vancomycin fAUC(24)/MIC of 85-170 (vancomycin MIC, 2-4 mg/L for VISA) resulted in a 0.4-0.7 log(10) reduction at 24 h. Vancomycin fAUC(24)/MIC of 5.3 (vancomycin MIC, 64 mg/L for VRSA) resulted in a limited effect. CONCLUSIONS: Ceftobiprole T > MIC of > or =100% (ceftobiprole MICs, < or =2 mg/L) was bactericidal (> or =3 log(10) killing) against MSSA, CA-MRSA, HA-MRSA, VISA and VRSA at 16 and 24 h. Vancomycin was bacteriostatic against MSSA, MRSA and VISA, while demonstrating no activity against VRSA.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/farmacocinética , Cefalosporinas/farmacologia , Cefalosporinas/farmacocinética , Staphylococcus aureus/efeitos dos fármacos , Resistência a Vancomicina , Vancomicina/farmacologia , Vancomicina/farmacocinética , Contagem de Colônia Microbiana , Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa