RESUMO
Cystic Fibrosis is the most common recessive autosomal rare disease found in Caucasian. It is caused by mutations on the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that encodes for a protein located on the apical membrane of epithelial cells. c.3909C>G (p.Asn1303Lys) is one of the most common worldwide mutations located in nucleotide binding domain 2. The effect of the p.Asn1303Lys mutation on misprocessing was studied by immunofluorescence and western blotting analysis in presence and absence of treatment. To evaluate the functionality of potentially rescued p.Asn1303Lys-CFTR, we assessed the channel activity by radioactive iodide efflux. No recovery of the activity was observed in transfected cultured cells treated with VX-809. Thus, our results suggest that multiple drugs may be needed for the treatment of c.3909C>G patients in order to correct and activate p.Asn1303Lys-CFTR as it shows folding and functional defects.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Leupeptinas , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Western Blotting , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Células HeLa , Humanos , Leupeptinas/farmacologia , Mutação/genéticaRESUMO
Cystic Fibrosis (CF) disease is caused by mutations in the CFTR gene (CF transmembrane conductance regulator). F508 deletion is the most represented mutation, and F508del-CFTR is absent of plasma membrane and accumulates into the endoplasmic reticulum (ER) compartment. Using specific Ca2+ genetics cameleon probes, we showed in the human bronchial CF epithelial cell line CFBE that ER Ca2+ concentration was strongly increased compared to non-CF (16HBE) cells, and normalized by the F508del-CFTR corrector agent, VX-809. We also showed that ER F508del-CFTR retention increases SERCA (Sarcoplasmic/Reticulum Ca2+ ATPase) pump activity whereas PMCA (Plasma Membrane Ca2+ ATPase) activities were reduced in these CF cells compared to corrected CF cells (VX-809) and non-CF cells. We are showing for the first time CFTR/SERCA and CFTR/PMCA interactions that are modulated in CF cells and could explain part of Ca2+ homeostasis deregulation due to mislocalization of F508del-CFTR. Using ER or mitochondria genetics Ca2+ probes, we are showing that ER Ca2+ content, mitochondrial Ca2+ uptake, SERCA and PMCA pump, activities are strongly affected by the localization of F508del-CFTR protein.
Assuntos
Cálcio/metabolismo , Fibrose Cística/patologia , Células Epiteliais/enzimologia , Homeostase , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/patologia , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Homeostase/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ligação Proteica/efeitos dos fármacosRESUMO
The cystic fibrosis transmembrane conductance regulator (CFTR) is present in mature sperm and is required for sperm motility and capacitation. Both these processes are controlled by ions fluxes and are essential for fertilization. We have shown that SLC26A8, a sperm-specific member of the SLC26 family of anion exchangers, associates with the CFTR channel and strongly stimulates its activity. This suggests that the two proteins cooperate to regulate the anion fluxes required for correct sperm motility and capacitation. Here, we report on three heterozygous SLC26A8 missense mutations identified in a cohort of 146 men presenting with asthenozoospermia: c.260G>A (p.Arg87Gln), c.2434G>A (p.Glu812Lys), and c.2860C>T (p.Arg954Cys). These mutations were not present in 121 controls matched for ethnicity, and statistical analysis on a control population of 8,600 individuals (from dbSNP and 1000 Genomes) showed them to be associated with asthenozoospermia with a power > 95%. By cotransfecting Chinese hamster ovary (CHO)-K1 cells with SLC26A8 variants and CFTR, we showed that the physical interaction between the two proteins was partly conserved but that the capacity to activate CFTR-dependent anion transport was completely abolished for all mutants. Biochemical studies revealed the presence of much smaller amounts of protein for all variants, but these amounts were restored to wild-type levels upon treatment with the proteasome inhibitor MG132. Immunocytochemistry also showed the amounts of SLC26A8 in sperm to be abnormally small in individuals carrying the mutations. These mutations might therefore impair formation of the SLC26A8-CFTR complex, principally by affecting SLC26A8 stability, consistent with an impairment of CFTR-dependent sperm-activation events in affected individuals.
Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Astenozoospermia/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto/genética , Animais , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Células CHO , Cricetinae , Cricetulus , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Capacitação Espermática/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Transportadores de SulfatoRESUMO
A synthetic route to a new class of conformationally constrained iminosugars based on a 5-azaspiro[3.4]octane skeleton has been developed by way of Rh(ii)-catalyzed C(sp(3))-H amination. The pivotal stereocontrolled formation of the quaternary C-N bond by insertion into the C-H bonds of the cyclobutane ring was explored with a series of polyoxygenated substrates. In addition to anticipated regioselective issues induced by the high density of activated α-ethereal C-H bonds, this systematic study showed that cyclobutane C-H bonds were, in general, poorly reactive towards catalytic C-H amination. This was demonstrated inter alia by the unexpected formation of a oxathiazonane derivative, which constitutes a very rare example of the formation of a 9-membered ring by way of catalyzed C(sp(3))-H amination. A complete stereocontrol could be however achieved by activating the key insertion position as an allylic C-H bond in combination with reducing the electron density at the undesired C-H insertion sites by using electron-withdrawing protecting groups. Preliminary biological evaluations of the synthesized spiro-iminosugars were performed, which led to the identification of a new class of correctors of the defective F508del-CFTR gating involved in cystic fibrosis.
Assuntos
Ciclobutanos/química , Ródio/química , Compostos de Espiro/síntese química , Aminação , Catálise , Estrutura Molecular , Compostos de Espiro/químicaRESUMO
Cardiac fibroblasts are an integral part of the myocardial tissue and contribute to its remodelling. This study characterises for the first time the calcium-dependent chloride channels (CaCC) in the plasma membrane of primary human atrial cardiac fibroblasts by means of the iodide efflux and the patch clamp methods. The calcium ionophore A23187 and Angiotensin II (Ang II) activate a chloride conductance in cardiac fibroblasts that shares pharmacological similarities with calcium-dependent chloride channels. This chloride conductance is depressed by RNAi-mediated selective Anoctamine 1 (ANO1) but not by Anoctamine 2 (ANO2) which has been revealed as CaCC and is inhibited by the selective ANO1 inhibitor, T16inh-A01. The effect of Ang II on anion efflux is mediated through AT1 receptors (with an EC50 = 13.8 ± 1.3 nM). The decrease of anion efflux by calphostin C and bisindolylmaleimide I (BIM I) suggests that chloride conductance activation is dependent on PKC. We conclude that ANO1 contributes to CaCC current in human cardiac fibroblasts and that this is regulated by Ang II acting via the AT1 receptor pathway.
Assuntos
Angiotensina II/fisiologia , Sinalização do Cálcio , Canais de Cloreto/fisiologia , Fibroblastos/metabolismo , Proteínas de Neoplasias/fisiologia , Idoso , Anoctamina-1 , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Cloretos/metabolismo , Feminino , Átrios do Coração/citologia , Humanos , Cinética , Masculino , Receptor Tipo 1 de Angiotensina/metabolismoRESUMO
The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male sterility due to a lack of sperm motility, impaired sperm capacitation and structural defects of the flagella. Ca(2+), Cl(-) and HCO(3)(-) influxes trigger sperm capacitation events required for oocyte fertilization; these events include the intracellular rise of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA)-dependent protein phosphorylation. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in mature sperm and has been shown to contribute to Cl(-) and HCO(3)(-) movements during capacitation. Furthermore, several members of the SLC26 family have been described to form complexes with CFTR, resulting in the reciprocal regulation of their activities. We show here that TAT1 and CFTR physically interact and that in Xenopus laevis oocytes and in CHO-K1 cells, TAT1 expression strongly stimulates CFTR activity. Consistent with this, we show that Tat1 inactivation in mouse sperm results in deregulation of the intracellular cAMP content, preventing the activation of PKA-dependent downstream phosphorylation cascades essential for sperm activation. These various results suggest that TAT1 and CFTR may form a molecular complex involved in the regulation of Cl(-) and HCO(3)(-) fluxes during sperm capacitation. In humans, mutations in CFTR and/or TAT1 may therefore be causes of asthenozoospermia and low fertilizing capacity of sperm.
Assuntos
Proteínas de Transporte de Ânions/fisiologia , Antiporters/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Capacitação Espermática/fisiologia , Testículo/metabolismo , Animais , Bicarbonatos/metabolismo , Células COS , Células Cultivadas , Cloretos/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Eletrofisiologia , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Motilidade dos Espermatozoides , Transportadores de Sulfato , Testículo/citologia , Xenopus laevisRESUMO
The airway functions are profoundly affected in many diseases including asthma, COPD and cystic fibrosis (CF). CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR (Cystic Fibrosis transmembrane Conductance Regulator) gene, which normally encodes a multifunctional and integral membrane cAMP regulated and ATP gated Cl(-) channel expressed in airway epithelial cells. Using human lung tissues obtained from patients undergoing surgery for lung cancer, we demonstrated that CFTR participates in bronchorelaxation. Using human bronchial smooth muscle cells (HBSMC), we applied iodide influx assay to analyze the CFTR-dependent ionic transport and immunofluorescence technique to localize CFTR proteins. Moreover, the relaxation was studied in isolated human bronchial segments after pre-contraction with carbachol to determine the implication of CFTR in bronchodilation. We found in HBSMC that the pharmacology and regulation of CFTR is similar to that of its epithelial counterpart both for activation (using forskolin/genistein or a benzo[c]quinolizinium derivative) and for inhibition (CFTR(inh)-172 and GPinh5a). With human bronchial rings, we observed that whatever the compound used including salbutamol, the activation of muscular CFTR leads to a bronchodilation after constriction with carbachol. Altogether, these observations revealed that CFTR in the human airways is expressed in bronchial smooth muscle cells and can be pharmacologically manipulated leading to the hypothesis that this ionic channel could contribute to bronchodilation in human.
Assuntos
Brônquios/metabolismo , Carbacol/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Miócitos de Músculo Liso/metabolismo , Idoso , Albuterol/farmacologia , Brônquios/efeitos dos fármacos , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imunofluorescência , Humanos , Transporte de Íons , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacosRESUMO
Cystic fibrosis is caused by a mutation in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. N-butyl 1-deoxynojirimycin (N-Bu DNJ), a clinical candidate for the treatment of cystic fibrosis, is able to act as a CFTR corrector by overcoming the processing defect of the mutant protein. To explore the potential of multivalency on CFTR correction activity, a library of twelve DNJ click clusters with valencies ranging from 3 to 14 were synthesized. Significantly, the trivalent analogues were found to be up to 225-fold more potent than N-Bu DNJ and up to 1000-fold more potent than the corresponding monovalent models. These results provide the first description of a multivalent effect for correcting protein folding defects in cells and should have application for the treatment of a number of protein folding disorders. Preliminary mechanistic studies indicated that CFTR correction activity enhancement was not due to a multivalent effect in ER-glucosidase inhibition or to a different mode of action of the multivalent iminosugars.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Desenho de Fármacos , Imino Açúcares/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HL-60 , Humanos , Imino Açúcares/química , Imino Açúcares/uso terapêutico , MutaçãoRESUMO
The Ho crossed aldol condensation provides access to a series of carbon branched iminosugars as exemplified by the synthesis of enantiomeric pairs of isoDMDP, isoDGDP, and isoDAB, allowing comparison of their biological activities with three linear isomeric natural products DMDP, DGDP, and DAB and their enantiomers. L-IsoDMDP [(2S,3S,4R)-2,4-bis(hydroxymethyl)pyrrolidine-3,4-diol], prepared in 11 steps in an overall yield of 45% from d-lyxonolactone, is a potent specific competitive inhibitor of gut disaccharidases [K(i) 0.081 µM for rat intestinal maltase] and is more effective in the suppression of hyperglycaemia in a maltose loading test than miglitol, a drug presently used in the treatment of late onset diabetes. The partial rescue of the defective F508del-CFTR function in CF-KM4 cells by L-isoDMDP is compared with miglustat and isoLAB in an approach to the treatment of cystic fibrosis.
Assuntos
1-Desoxinojirimicina/análogos & derivados , Inibidores da Angiogênese/farmacologia , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases , Imino Açúcares/farmacologia , 1-Desoxinojirimicina/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Imino Açúcares/síntese química , Imino Açúcares/química , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismoRESUMO
Genotype-phenotype correlations in cystic fibrosis (CF) may be difficult to establish because of phenotype variability, which is associated with certain CF transmembrane conductance regulator (CFTR) gene mutations and the existence of complex alleles. To elucidate the clinical significance of complex alleles involving p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, we performed a collaborative genotype-phenotype correlation study, collected epidemiological data, and investigated structure-function relationships for single and natural complex mutants, p.[Gly576Ala;Arg668Cys], p.[Gly149Arg;Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys]. Among 153 patients carrying at least one of these mutations, only three had classical CF and all carried p.Gly149Arg in the triple mutant. Sixty-four had isolated infertility and seven were healthy individuals with a severe mutation in trans, but none had p.Gly149Arg. Functional studies performed on all single and natural complex mutants showed that (1) p.Gly149Arg results in a severe misprocessing defect; (2) p.Asp443Tyr moderately alters CFTR maturation; and (3) p.Gly576Ala, a known splicing mutant, and p.Arg668Cys mildly alter CFTR chloride conductance. Overall, the results consistently show the contribution of p.Gly149Arg to the CF phenotype, and suggest that p.[Arg668Cys], p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] are associated with CFTR-related disorders. The present study emphasizes the importance of comprehensive genotype-phenotype and functional studies in elucidating the impact of mutations on clinical phenotype.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Proteínas Mutantes/genética , Mutação , Alelos , Substituição de Aminoácidos , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , França , Frequência do Gene , Estudos de Associação Genética , Células HeLa , Heterozigoto , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/fisiologia , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
In cystic fibrosis (CF), abnormal control of cellular Ca(2+) homeostasis is observed. We hypothesized that transient receptor potential canonical (TRPC) channels could be a link between the abnormal Ca(2+) concentrations in CF cells and cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. We measured the TRPC and CFTR activities (using patch clamp and fluorescent probes) and interactions (using Western blotting and co-immunoprecipitation) in CF and non-CF human epithelial cells treated with specific and scrambled small interfering RNA (siRNA). The TRPC6-mediated Ca(2+) influx was abnormally increased in CF compared with non-CF cells. After correction of abnormal F508 deletion (del)-CFTR trafficking in CF cells, the level of TRPC6-dependent Ca(2+) influx was also normalized. In CF cells, siRNA-TRPC6 reduced this abnormal Ca(2+) influx. In non-CF cells, siRNA-TRPC6 reduced the Ca(2+) influx and activity wild-type (wt)-CFTR. Co-immunoprecipitation experiments revealed TRPC6/CFTR and TRPC6/F508 del-CFTR interactions in CF or non-CF epithelial cells. Although siRNA-CFTR reduced the activity of wt-CFTR in non-CF cells and of F508 del-CFTR in corrected CF cells, it also enhanced TRPC6-dependent Ca(2+) influx in non-CF cells, mimicking the results obtained in CF cells. Finally, this functional and reciprocal coupling between CFTR and TRPC6 was also detected in non-CF ciliated human epithelial cells freshly isolated from lung samples. These data indicate that TRPC6 and CFTR are functionally and reciprocally coupled within a molecular complex in airway epithelial human cells. Because this functional coupling is lost in CF cells, the TRPC6-dependent Ca(2+) influx is abnormal.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Canais de Cátion TRPC/metabolismo , Western Blotting , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/patologia , Feminino , Homeostase , Humanos , Imunoprecipitação , Masculino , Potenciais da Membrana , Microscopia de Fluorescência , Pessoa de Meia-Idade , Mutação , Técnicas de Patch-Clamp , Ligação Proteica , Interferência de RNA , Mucosa Respiratória/patologia , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Fatores de TempoRESUMO
A series of neoglycoconjugates derived from deoxynojirimycin has been prepared by click connection with functionalised adamantanes. They have been assayed as glycosidase inhibitors, as inhibitors of the glycoenzymes relevant to the treatment of Gaucher disease, as well as correctors of the defective ion-transport protein involved in cystic fibrosis. We have demonstrated that it is possible to selectively either strongly inhibit ER-α-glucosidases and ceramide glucosyltransferase or restore the activity of CFTR in CF-KM4 cells by varying the length of the alkyl chain linking DNJ and adamantane.
Assuntos
1-Desoxinojirimicina/química , Antivirais/química , Inibidores Enzimáticos/química , Glicoconjugados/química , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Química Click , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HL-60 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Ratos , Bibliotecas de Moléculas Pequenas/químicaRESUMO
The syntheses of 4-C-Me-DAB [1,4-dideoxy-1,4-imino-4-C-methyl-d-arabinitol] from l-erythronolactone and of 4-C-Me-LAB [from d-erythronolactone] require only a single acetonide protecting group. The effect of pH on the NMR spectra of 4-C-Me-DAB [pK(a) of the salt around 8.4] is discussed and illustrates the need for care in analysis of both coupling constants and chemical shift. 4-C-Me-DAB (for rat intestinal sucrase K(i) 0.89 µM, IC(50) 0.41 µM) is a competitive - whereas 4-C-Me-LAB (for rat intestinal sucrase K(i) 0.95 µM, IC(50) 0.66 µM) is a non-competitive - specific and potent α-glucosidase inhibitor. A rationale for the α-glucosidase inhibition by DAB, LAB, 4-C-Me-DAB, 4-C-Me-LAB, and isoDAB - but not isoLAB - is provided. Both are inhibitors of endoplasmic reticulum (ER) resident α-glucosidase I and II.
RESUMO
Cystic fibrosis (CF) is a fatal, autosomal and recessive genetic disease that is mainly due to inactivating mutations in the chloride channel CF transmembrane conductance regulator (CFTR). Sodium hyperabsorption by the airways, profound lung inflammation, and dysregulation of calcium homeostasis, are presumably causally related to loss of CFTR-dependent chloride function in patients with CF. Miglustat (N-butyldeoxynojirimycin, Zavesca), an inhibitor of the alpha-1,2 glucosidase, has been proposed for clinical use in CF because of its effect as a corrector of the defective trafficking of F508del-CFTR. In the present study, we show that daily treatment for 2 months with low concentrations of miglustat on the human CF nasal epithelial cell line, JME/CF15 (F508del/F508del-CFTR), results in progressive, stable, reversible, and sustained correction of F508del-CFTR trafficking, down-regulation of sodium hyperabsorption, and regulation of the calcium homeostasis. In conclusion, we provide here the first evidence that a respiratory CF cell can acquire a non-CF-like phenotype when chronically treated with low concentrations of a pharmacological drug.
Assuntos
1-Desoxinojirimicina/análogos & derivados , Fibrose Cística , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Mucosa Respiratória/citologia , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Animais , Cálcio/metabolismo , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Homeostase , Humanos , Camundongos , Técnicas de Patch-Clamp , FenótipoRESUMO
F508del is the most common cystic fibrosis-causing mutation that induces early degradation and poor trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels to the apical membrane of epithelial cells. Our previous work in bronchial serous cells showed that vasoactive intestinal peptide (VIP) stimulation of the VPAC(1) receptor enhances CFTR-dependent chloride secretion by increasing its membrane insertion by a protein kinase C (PKC)-dependent pathway. In the present study, we investigated the effect of VIP on F508del-CFTR activity and membrane insertion in the human nasal epithelial cell line JME/CF15, which also expresses the VPAC(1) receptor. At reduced temperature (27 degrees C), which rescues F508del-CFTR trafficking, acute stimulation by VIP of rescued F508del-CFTR channels was protein kinase A (PKA)- and PKC-dependent. One hour of treatment with VIP strongly increased F508del-CFTR activity, with iodide efflux peaks three times higher than with untreated cells. At 37 degrees C, VIP-treated cells, but not untreated controls, showed significant iodide efflux peaks that were sensitive to the CFTR inhibitor 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone (CFTR(inh)-172). Immunostaining, biotinylation assays, and Western blots confirmed a VIP-induced maturation and membrane insertion of F508del-CFTR at 37 degrees C. The corrector effect of VIP was abolished by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamidedihydrochloride (H89), whereas Galpha(s) stimulation by cholera toxin significantly increased F508del-CFTR trafficking. On the other hand, membrane localization, but not maturation, of F508del-CFTR was significantly reduced by the PKC inhibitor bisindolylmaleimide X and the G(i/o) protein inhibitor pertussis toxin. VIP treatment had no effect on intracellular calcium or proteasome activity. These results indicate that, in human nasal cells, VIP rescues trafficking and membrane insertion of functional F508del-CFTR channels at physiological temperature by stimulating both PKA- and PKC-dependent pathways.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Células Epiteliais/fisiologia , Mucosa Nasal/fisiologia , Deleção de Sequência/genética , Peptídeo Intestinal Vasoativo/fisiologia , Linhagem Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Fibrose Cística/enzimologia , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Humanos , Mucosa Nasal/enzimologia , Mucosa Nasal/patologia , Fenilalanina/genética , Proteína Quinase C/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genéticaRESUMO
The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein is a chloride channel localized at the apical plasma membrane of epithelial cells. We previously described that syntaxin 8, an endosomal SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) protein, interacts with CFTR and regulates its trafficking to the plasma membrane and hence its channel activity. Syntaxin 8 belongs to the endosomal SNARE complex which also contains syntaxin 7, vti1b and VAMP8. Here, we report that these four endosomal SNARE proteins physically and functionally interact with CFTR. In LLC-PK1 cells transfected with CFTR and in Caco-2 cells endogenously expressing CFTR, we demonstrated that endosomal SNARE protein overexpression inhibits CFTR activity but not swelling- or calcium-activated iodide efflux, indicating a specific effect upon CFTR activity. Moreover, co-immunoprecipitation experiments in LLC-PK1-CFTR cells showed that CFTR and SNARE proteins belong to a same complex and pull-down assays showed that VAMP8 and vti1b preferentially interact with CFTR N-terminus tail. By cell surface biotinylation and immunofluorescence experiments, we evidenced that endosomal SNARE overexpression disturbs CFTR apical targeting. Finally, we found a colocalization of CFTR and endosomal SNARE proteins in Rab11-positive recycling endosomes, suggesting a new role for endosomal SNARE proteins in CFTR trafficking in epithelial cells.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animais , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Endossomos/metabolismo , Células Epiteliais/citologia , Humanos , Iodetos/metabolismo , Transporte Proteico/fisiologia , Proteínas Qa-SNARE/genética , Proteínas Qb-SNARE/genética , Proteínas R-SNARE/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Retention of F508del-CFTR proteins in the endoplasmic reticulum (ER) is dependent upon chaperone proteins, many of which require Ca(2+) for optimal activity. Here, we show in human tracheal gland CF-KM4 cells, that after correction of F508del-CFTR trafficking by miglustat (N-butyldeoxynojirimycin) or low temperature (27 degrees C), the Ca(2+) mobilization is decreased compared to uncorrected cells and becomes identical to the Ca(2+) response observed in non-CF MM39 cells. In CF-KM4 and human nasal epithelial CF15 cells, we also show that inhibiting vesicular trafficking by nocodazole prevents not only the rescue of F508del-CFTR but also the Ca(2+) mobilization decrease. Finally, experiments using the CFTR inhibitor CFTR(inh)-172 showed that the presence but not the channel activity of F508del-CFTR at the plasma membrane is required to decrease the Ca(2+) mobilization in corrected CF cells. These findings show that correction of the abnormal trafficking of F508del-CFTR proteins might have profound consequences on cellular homeostasis such as the control of intracellular Ca(2+) level.
Assuntos
Sinalização do Cálcio/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/fisiopatologia , Células Epiteliais/fisiologia , Mucosa Respiratória/fisiologia , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Trifosfato de Adenosina/farmacologia , Benzoatos/farmacologia , Compostos de Boro/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Histamina/farmacologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Nocodazol/farmacologia , Transporte Proteico/fisiologia , Deleção de Sequência , Temperatura , Tiazolidinas/farmacologiaRESUMO
The most common mutation (F508del) causing cystic fibrosis (CF) results in misfolding of the CF transmembrane conductance regulator (CFTR), leading to its degradation via the proteasome pathway. To study the mechanism of action of several pharmacological chaperones benzo[c]quinolizinium (MPB), we analyzed their effects on two CF mutations; F508del-CFTR and G622D-CFTR. The replacement of Gly622 by an aspartic acid (G622D) alters the trafficking and activity of the protein. G622D, similar to F508del, was functionally rescued by the glucosidase inhibitor miglustat but, unlike F508del, could not be rescued by MPB. A structure-activity relationship for F508del functional correction revealed the following profile: MPB-104-91-07-80 > 05 > 89 >> 9-hydroxyphenanthrene = phenanthrene. Coimmunoprecipitation experiments on human airway epithelial F508del/F508del CF15 cells showed that MPB did not prevent the interaction of F508del-CFTR with heat shock protein (HSP)70, HSP90, or calnexin. Functional rescue of F508del-CFTR by MPB and miglustat was abolished by brefeldin A (BFA) but potentiated by thapsigargin (TG) and geldanamycin. The proteasome inhibitor MG132 potentiated the effect of miglustat but only modestly affected that of MPB. It is noteworthy that MPB inhibited proteasome activity in F508del-CFTR-expressing cells but did not directly affect the activity of purified 20S proteasome. With the mutant G622D-CFTR, MPB did not inhibit proteasome activity, as in mock-transfected cells. Inhibition of cellular degradation machinery by MPB is not only CFTR-dependent, but it also follows similar structure-activity relationship as demonstrated by functional correction. We conclude that G622D is a partial trafficking-deficient mutant with dysfunctional chloride channel activity, and that Gly622 is part of the putative site for interaction of MPB with CFTR, protecting the channel from proteasome-mediated degradation.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Glicina/genética , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Quinolizinas/farmacologia , Sítios de Ligação , Linhagem Celular , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Transporte Proteico , Relação Estrutura-AtividadeRESUMO
Sertoli cells provide a controlled microenvironment for regulation and maintenance of spermatogenesis for which an acidic milieu is crucial for male fertility. Sertoli cells also contribute to protection of spermatogenetic cells. Here, we showed that TRPV1 is expressed in rat Sertoli cells and regulates an acid sensing Cl(-) channel (ASCC). The expression of TRPV1 in rat Sertoli cells was demonstrated by RT-PCR, immunostaining and calcium measurement experiments. ASCC activity was inhibited by capsaicin (IC(50)=214.3+/-1.6 nM), olvanil (IC(50)=400+/-1.7 pM) and resiniferatoxin (IC(50)=9.3+/-1.5 nM) but potentiated by capsazepine (EC(50)=5.3+/-1.3 microM) and ruthenium red (EC(50)=2.3+/-1.5 microM). In the human airway epithelial cell line Calu-3 in which ASCC can be detected but not TRPV1, capsaicin and capsazepine were without any effect. Finally the application of the non-steroidal anti-inflammatory drug ibuprofen prevented the control of ASCC by TRPV1. Our study provides the first evidence for a regulation by TRPV1 of an acid sensing chloride channel in rat Sertoli cells. TRPV1 and ASCC may thus be considered as new potential physiological regulators of spermatogenesis and targets for pharmacological treatments of reproductive disorders as cryptorchidism, Sertoli cell tumors or torsion of the spermatic cord.
Assuntos
Canais de Cloreto/fisiologia , Células de Sertoli/metabolismo , Canais de Cátion TRPV/fisiologia , Animais , Cálcio/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Células Cultivadas , Concentração de Íons de Hidrogênio , Ibuprofeno/farmacologia , Masculino , Ratos , Ratos WistarRESUMO
BACKGROUND: In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC) stimulation, which generates inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) and induces Ca2+ release from endoplasmic reticulum (ER) stores. METHODS: In the present study, we monitored the cytosolic Ca2+ transients using the UV light photolysis technique to uncage caged Ca2+ or caged IP3 into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF) and non-CF origin. We compared in these cells the types of Ca2+ receptors present in the ER, and measured their Ca2+ dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin). RESULTS: We showed reduction of the inositol 1,4,5-trisphosphate receptors (IP3R) dependent-Ca2+ response following both correcting treatments compared to uncorrected cells in such a way that Ca2+ responses (CF+treatment vs wild-type cells) were normalized. This normalization of the Ca2+ rate does not affect the activity of Ca2+-dependent chloride channel in miglustat-treated CF cells. Using two inhibitors of IP3R1, we observed a decrease of the implication of IP3R1 in the Ca2+ response in CF corrected cells. We observed a similar Ca2+ mobilization between CF-KM4 cells and CFTR-cDNA transfected CF cells (CF-KM4-reverted). When we restored the F508del-CFTR trafficking in CFTR-reverted cells, the specific IP3R activity was also reduced to a similar level as in non CF cells. At the structural level, the ER morphology of CF cells was highly condensed around the nucleus while in non CF cells or corrected CF cells the ER was extended at the totality of cell. CONCLUSION: These results suggest reversal of the IP3R dysfunction in F508del-CFTR epithelial cells by correction of the abnormal trafficking of F508del-CFTR in cystic fibrosis cells. Moreover, using CFTR cDNA-transfected CF cells, we demonstrated that abnormal increase of IP3R Ca2+ release in CF human epithelial cells could be the consequence of F508del-CFTR retention in ER compartment.