Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(8): 3227-3236, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28125780

RESUMO

To completely displace the carboxylate surface ligands from cadmium selenide nanocrystals, oleic acid impurities are first removed using dimethylcadmium or diethylzinc. In addition to metal carboxylate and methane coproducts, reactions with CdMe2 produce surface bound methyl groups (δ = 0.4 ppm, 0.04-0.22 nm-2) that photolytically dissociate to methyl radicals and n-doped nanocrystals. Without oleic acid impurities, cadmium carboxylate can be completely displaced from the surface using n-alkylamines (NH2R', R' = n-butyl, n-hexyl, n-octyl) (≤0.01 carboxylates nm-2). Colloidal dispersions of amine bound nanocrystals (CdSe-NH2R') are indefinitely stable at amine concentrations of 0.1 M or higher and slowly aggregate at lower concentrations. Dissociation and evaporation of the amine ligands in 4-ethylpyridine, tri-n-butylphosphine, or molten tri-n-octylphosphine oxide solution results in nanocrystal aggregation. CdSe-NH2R' reacts with oleic acid, n-octadecylphosphonic acid, or carbon dioxide to form surface bound n-alkylammonium oleate, phosphonate, and carbamate ion pairs that bind with greater affinity than primary n-alkylamines. The results indicate that nanocrystal dispersions solely stabilized by neutral donor ligands are relatively unstable compared to those stabilized by adsorbed metal carboxylate or phosphonate complexes or by ion pairs. The challenge of differentiating between the neutral ligand bound form and adsorbed ion pairs is discussed.


Assuntos
Compostos de Cádmio/química , Carbamatos/química , Ácidos Carboxílicos/química , Nanopartículas/química , Organofosfonatos/química , Compostos de Selênio/química , Ânions/química , Sítios de Ligação , Estrutura Molecular
2.
J Am Chem Soc ; 137(5): 2089-96, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25602495

RESUMO

Recent discoveries of highly efficient solar cells based on lead iodide perovskites have led to a surge in research activity on understanding photo carrier generation in these materials, but little is known about trap states that may be detrimental to solar cell performance. Here we provide direct evidence for hole traps on the surfaces of three-dimensional (3D) CH3NH3PbI3 perovskite thin films and excitonic traps below the optical gaps in these materials. The excitonic traps possess weak optical transition strengths, can be populated from the relaxation of above gap excitations, and become more significant as dimensionality decreases from 3D CH3NH3PbI3 to two-dimensional (2D) (C4H9NH3I)2(CH3NH3I)(n-1)(PbI2)(n) (n = 1, 2, 3) perovskites and, within the 2D family, as n decreases from 3 to 1. We also show that the density of excitonic traps in CH3NH3PbI3 perovskite thin films grown in the presence of chloride is at least one-order of magnitude lower than that grown in the absence of chloride, thus explaining a widely known mystery on the much better solar cell performance of the former. The trap states are likely caused by electron-phonon coupling and are enhanced at surfaces/interfaces where the perovskite crystal structure is most susceptible to deformation.

3.
Nano Lett ; 14(1): 127-33, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24266720

RESUMO

We report the structure of methylammonium lead(II) iodide perovskite in mesoporous TiO2, as used in high-performance solar cells. Pair distribution function analysis of X-ray scattering reveals a two component nanostructure: one component with medium range crystalline order (30 atom %) and another with only local structural coherence (70 atom %). The nanostructuring correlates with a blueshift of the absorption onset and increases the photoluminescence. Our findings underscore the importance of fully characterizing and controlling the structure for improved solar cell efficiency.

4.
ACS Nano ; 8(7): 7513-21, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24960255

RESUMO

We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (≤150 °C), (2) irreversible particle fusion (200-300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl(-), while films with 3 atom % Cl(-) resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5-5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm(2)/(Vs) and on/off ratios of 10(5) with less than 0.5 V hysteresis in threshold voltage without the addition of indium.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa