Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nucleic Acids Res ; 49(2): 657-673, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33367834

RESUMO

Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.


Assuntos
Sistema Nervoso Central/química , Camundongos/metabolismo , Oligonucleotídeos Antissenso/farmacocinética , Primatas/metabolismo , Ratos/metabolismo , Animais , Sistema Nervoso Central/citologia , Feminino , Hibridização In Situ , Injeções Intraventriculares , Injeções Espinhais , Macaca fascicularis , Masculino , Neuroglia/química , Neurônios/química , Oligonucleotídeos Antissenso/administração & dosagem , Especificidade de Órgãos , RNA Longo não Codificante/análise , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Ribonuclease H , Distribuição Tecidual
2.
N Engl J Med ; 380(24): 2307-2316, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31059641

RESUMO

BACKGROUND: Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. METHODS: We conducted a randomized, double-blind, multiple-ascending-dose, phase 1-2a trial involving adults with early Huntington's disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. RESULTS: Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and -20%, -25%, -28%, -42%, and -38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). CONCLUSIONS: Intrathecal administration of HTTRx to patients with early Huntington's disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02519036.).


Assuntos
Proteína Huntingtina/antagonistas & inibidores , Doença de Huntington/tratamento farmacológico , Nucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Proteína Huntingtina/líquido cefalorraquidiano , Proteína Huntingtina/genética , Injeções Espinhais , Masculino , Pessoa de Meia-Idade , Mutação , Nucleotídeos/síntese química , Oligonucleotídeos/líquido cefalorraquidiano
3.
Lancet ; 388(10063): 3017-3026, 2016 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-27939059

RESUMO

BACKGROUND: Nusinersen is a 2'-O-methoxyethyl phosphorothioate-modified antisense drug being developed to treat spinal muscular atrophy. Nusinersen is specifically designed to alter splicing of SMN2 pre-mRNA and thus increase the amount of functional survival motor neuron (SMN) protein that is deficient in patients with spinal muscular atrophy. METHODS: This open-label, phase 2, escalating dose clinical study assessed the safety and tolerability, pharmacokinetics, and clinical efficacy of multiple intrathecal doses of nusinersen (6 mg and 12 mg dose equivalents) in patients with infantile-onset spinal muscular atrophy. Eligible participants were of either gender aged between 3 weeks and 7 months old with onset of spinal muscular atrophy symptoms between 3 weeks and 6 months, who had SMN1 homozygous gene deletion or mutation. Safety assessments included adverse events, physical and neurological examinations, vital signs, clinical laboratory tests, cerebrospinal fluid laboratory tests, and electrocardiographs. Clinical efficacy assessments included event free survival, and change from baseline of two assessments of motor function: the motor milestones portion of the Hammersmith Infant Neurological Exam-Part 2 (HINE-2) and the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) motor function test, and compound motor action potentials. Autopsy tissue was analysed for target engagement, drug concentrations, and pharmacological activity. HINE-2, CHOP-INTEND, and compound motor action potential were compared between baseline and last visit using the Wilcoxon signed-rank test. Age at death or permanent ventilation was compared with natural history using the log-rank test. The study is registered at ClinicalTrials.gov, number NCT01839656. FINDINGS: 20 participants were enrolled between May 3, 2013, and July 9, 2014, and assessed through to an interim analysis done on Jan 26, 2016. All participants experienced adverse events, with 77 serious adverse events reported in 16 participants, all considered by study investigators not related or unlikely related to the study drug. In the 12 mg dose group, incremental achievements of motor milestones (p<0·0001), improvements in CHOP-INTEND motor function scores (p=0·0013), and increased compound muscle action potential amplitude of the ulnar nerve (p=0·0103) and peroneal nerve (p<0·0001), compared with baseline, were observed. Median age at death or permanent ventilation was not reached and the Kaplan-Meier survival curve diverged from a published natural history case series (p=0·0014). Analysis of autopsy tissue from patients exposed to nusinersen showed drug uptake into motor neurons throughout the spinal cord and neurons and other cell types in the brainstem and other brain regions, exposure at therapeutic concentrations, and increased SMN2 mRNA exon 7 inclusion and SMN protein concentrations in the spinal cord. INTERPRETATION: Administration of multiple intrathecal doses of nusinersen showed acceptable safety and tolerability, pharmacology consistent with its intended mechanism of action, and encouraging clinical efficacy. Results informed the design of an ongoing, sham-controlled, phase 3 clinical study of nusinersen in infantile-onset spinal muscular atrophy. FUNDING: Ionis Pharmaceuticals, Inc and Biogen.


Assuntos
Oligonucleotídeos/administração & dosagem , Segurança do Paciente , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Feminino , Humanos , Injeções Espinhais , Masculino , Mutação , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos/farmacocinética , RNA Mensageiro/genética
4.
J Pharmacol Exp Ther ; 350(1): 46-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24784568

RESUMO

Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adult mice, compared with several other chemically modified ASOs. We evaluated methods of ISIS 396443 delivery to the CNS and characterized its pharmacokinetics and pharmacodynamics in rodents and nonhuman primates (NHPs). Intracerebroventricular bolus injection is a more efficient method of delivering ISIS 396443 to the CNS of rodents, compared with i.c.v. infusion. For both methods of delivery, the duration of ISIS 396443-mediated SMN2 splicing correction is long lasting, with maximal effects still observed 6 months after treatment discontinuation. Administration of ISIS 396443 to the CNS of NHPs by a single intrathecal bolus injection results in widespread distribution throughout the spinal cord. Based upon these preclinical studies, we have advanced ISIS 396443 into clinical development.


Assuntos
Encéfalo/efeitos dos fármacos , Atrofia Muscular Espinal/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Splicing de RNA/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Encéfalo/metabolismo , Feminino , Infusões Intraventriculares , Injeções Intraventriculares , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , Atrofia Muscular Espinal/tratamento farmacológico , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/uso terapêutico
5.
Expert Opin Drug Metab Toxicol ; 19(12): 979-990, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37970635

RESUMO

INTRODUCTION: Advances in research and development (R&D) have enabled many approvals of antisense oligonucleotides (ASOs). Its administration expanded from systemic to local for treating various diseases, where predicting target tissue exposures and pharmacokinetics (PK) and pharmacodynamics (PD) in human can be critical. AREAS COVERED: A literature search for PBPK/PD models of ASOs was conducted using PubMed and Embase (to 1 April 2023). ASO PK and PD in animals and humans and modeling approaches including physiologically based (PB) are summarized; and relevance and impacts of PBPK/PD modeling are assessed. EXPERT OPINION: Allometric scaling and compartmental PK/PD modeling have been successful to predict human ASO PK/PD, addressing most R&D needs. Understanding tissue distribution of ASOs can be crucial for their efficacy and safety especially for intrathecal (IT), pulmonary, or other local routes. PBPK/PD modeling is expected to improve such understanding, for which, efforts have been sporadic. However, developing a PBPK/PD model requires careful review of known biology/pharmacology and thoughtful experimental designs. Resulting models have the potential to predict target/specified tissue exposures and responses in human adults and pediatrics. Ultimately, a PBPK/PD modeling approach can lead to more efficient and rational clinical development, resulting in well-informed decision making and a shortened timeline.


Assuntos
Modelos Biológicos , Oligonucleotídeos Antissenso , Adulto , Animais , Humanos , Criança , Oligonucleotídeos Antissenso/farmacologia , Distribuição Tecidual , Pulmão , Farmacocinética
6.
CPT Pharmacometrics Syst Pharmacol ; 12(9): 1213-1226, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37221972

RESUMO

Tominersen is an intrathecally administered antisense oligonucleotide targeting huntingtin mRNA which leads to a dose-dependent, reversible lowering of cerebrospinal fluid (CSF) mutant huntingtin protein concentration in individuals with Huntington's disease. Nonlinear mixed-effect population pharmacokinetic (PopPK) modeling was conducted to characterize the CSF and plasma pharmacokinetics (PK) of tominersen, and to identify and quantify the covariates that affect tominersen PKs. A total of 750 participants from five clinical studies with a dose range from 10 to 120 mg contributed CSF (n = 6302) and plasma (n = 5454) PK samples. CSF PK was adequately described by a three-compartment model with first-order transfer from CSF to plasma. Plasma PK was adequately described by a three-compartment model with first-order elimination from plasma. Baseline total CSF protein, age, and antidrug antibodies (ADAs) were the significant covariates for CSF clearance. Body weight was a significant covariate for clearances and volumes in plasma. ADAs and sex were significant covariates for plasma clearance. The developed PopPK model was able to describe tominersen PK in plasma and CSF after intrathecal administration across a range of dose levels, and relevant covariate relationships were identified. This model has been applied to guide dose selection for future clinical trials of tominersen in patients with Huntington's disease.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/tratamento farmacológico , Oligonucleotídeos , Cinética
7.
Lancet Neurol ; 22(3): 218-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804094

RESUMO

BACKGROUND: Myotonic dystrophy type 1 results from an RNA gain-of-function mutation, in which DM1 protein kinase (DMPK) transcripts carrying expanded trinucleotide repeats exert deleterious effects. Antisense oligonucleotides (ASOs) provide a promising approach to treatment of myotonic dystrophy type 1 because they reduce toxic RNA levels. We aimed to investigate the safety of baliforsen (ISIS 598769), an ASO targeting DMPK mRNA. METHODS: In this dose-escalation phase 1/2a trial, adults aged 20-55 years with myotonic dystrophy type 1 were enrolled at seven tertiary referral centres in the USA and randomly assigned via an interactive web or phone response system to subcutaneous injections of baliforsen 100 mg, 200 mg, or 300 mg, or placebo (6:2 randomisation at each dose level), or to baliforsen 400 mg or 600 mg, or placebo (10:2 randomisation at each dose level), on days 1, 3, 5, 8, 15, 22, 29, and 36. Sponsor personnel directly involved with the trial, participants, and all study personnel were masked to treatment assignments. The primary outcome measure was safety in all participants who received at least one dose of study drug up to day 134. This trial is registered with ClinicalTrials.gov (NCT02312011), and is complete. FINDINGS: Between Dec 12, 2014, and Feb 22, 2016, 49 participants were enrolled and randomly assigned to baliforsen 100 mg (n=7, one patient not dosed), 200 mg (n=6), 300 mg (n=6), 400 mg (n=10), 600 mg (n=10), or placebo (n=10). The safety population comprised 48 participants who received at least one dose of study drug. Treatment-emergent adverse events were reported for 36 (95%) of 38 participants assigned to baliforsen and nine (90%) of ten participants assigned to placebo. Aside from injection-site reactions, common treatment-emergent adverse events were headache (baliforsen: ten [26%] of 38 participants; placebo: four [40%] of ten participants), contusion (baliforsen: seven [18%] of 38; placebo: one [10%] of ten), and nausea (baliforsen: six [16%] of 38; placebo: two [20%] of ten). Most adverse events (baliforsen: 425 [86%] of 494; placebo: 62 [85%] of 73) were mild in severity. One participant (baliforsen 600 mg) developed transient thrombocytopenia considered potentially treatment related. Baliforsen concentrations in skeletal muscle increased with dose. INTERPRETATION: Baliforsen was generally well tolerated. However, skeletal muscle drug concentrations were below levels predicted to achieve substantial target reduction. These results support the further investigation of ASOs as a therapeutic approach for myotonic dystrophy type 1, but suggest improved drug delivery to muscle is needed. FUNDING: Ionis Pharmaceuticals, Biogen.


Assuntos
Distrofia Miotônica , Oligonucleotídeos Antissenso , Adulto , Humanos , Método Duplo-Cego , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Miotonina Proteína Quinase , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA , RNA Mensageiro/metabolismo , Resultado do Tratamento
8.
Nat Med ; 29(6): 1437-1447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095250

RESUMO

Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego
9.
Bioorg Med Chem Lett ; 19(21): 6047-52, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19796938

RESUMO

The discovery of 5,5'- and 6,6'-dialkyl-5,6-dihydro-1H-pyridin-2-ones as potent inhibitors of the HCV RNA-dependent RNA polymerase (NS5B) is described. Several of these agents also display potent antiviral activity in cell culture experiments (EC50 <0.10 microM). In vitro DMPK data for selected compounds as well as crystal structures of representative inhibitors complexed with the NS5B protein are also disclosed.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Piridonas/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/síntese química , Antivirais/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Macaca fascicularis , Microssomos Hepáticos/metabolismo , Piridonas/síntese química , Piridonas/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 19(2): 451-8, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19054673

RESUMO

5,6-Dihydro-1H-pyridin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4ad displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; IC(50) (1a)<25nM, EC(50) (1b)=16nM), good in vitro DMPK properties, as well as moderate oral bioavailability in monkeys (F=24%).


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piridonas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Haplorrinos , Piridonas/administração & dosagem , Piridonas/química , Piridonas/farmacocinética , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 19(22): 6404-12, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19818610

RESUMO

A novel series of non-nucleoside small molecules containing a tricyclic dihydropyridinone structural motif was identified as potent HCV NS5B polymerase inhibitors. Driven by structure-based design and building on our previous efforts in related series of molecules, we undertook extensive SAR studies, in which we identified a number of metabolically stable and very potent compounds in genotype 1a and 1b replicon assays. This work culminated in the discovery of several inhibitors, which combined potent in vitro antiviral activity against both 1a and 1b genotypes, metabolic stability, good oral bioavailability, and high C(12) (PO)/EC(50) ratios.


Assuntos
Disponibilidade Biológica , Desenho de Fármacos , Relação Estrutura-Atividade , Antivirais/farmacocinética , Química Farmacêutica , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Genótipo , Hepacivirus/efeitos dos fármacos , Hepatite C , Estrutura Molecular , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais/antagonistas & inibidores
13.
J Clin Invest ; 129(11): 4817-4831, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589162

RESUMO

BACKGROUNDSpinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein. New SMN-enhancing therapeutics are associated with variable clinical benefits. Limited knowledge of baseline and drug-induced SMN levels in disease-relevant tissues hinders efforts to optimize these treatments.METHODSSMN mRNA and protein levels were quantified in human tissues isolated during expedited autopsies.RESULTSSMN protein expression varied broadly among prenatal control spinal cord samples, but was restricted at relatively low levels in controls and SMA patients after 3 months of life. A 2.3-fold perinatal decrease in median SMN protein levels was not paralleled by comparable changes in SMN mRNA. In tissues isolated from nusinersen-treated SMA patients, antisense oligonucleotide (ASO) concentration and full-length (exon 7 including) SMN2 (SMN2-FL) mRNA level increases were highest in lumbar and thoracic spinal cord. An increased number of cells showed SMN immunolabeling in spinal cord of treated patients, but was not associated with an increase in whole-tissue SMN protein levels.CONCLUSIONSA normally occurring perinatal decrease in whole-tissue SMN protein levels supports efforts to initiate SMN-inducing therapies as soon after birth as possible. Limited ASO distribution to rostral spinal and brain regions in some patients likely limits clinical response of motor units in these regions for those patients. These results have important implications for optimizing treatment of SMA patients and warrant further investigations to enhance bioavailability of intrathecally administered ASOs.FUNDINGSMA Foundation, SMART, NIH (R01-NS096770, R01-NS062869), Ionis Pharmaceuticals, and PTC Therapeutics. Biogen provided support for absolute real-time RT-PCR.


Assuntos
Envelhecimento , Neurônios Motores , Atrofia Muscular Espinal , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Medula Espinal , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Autopsia , Sobrevivência Celular , Feminino , Humanos , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 2 de Sobrevivência do Neurônio Motor/antagonistas & inibidores , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
15.
16.
Bioorg Med Chem Lett ; 18(11): 3446-55, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18457949

RESUMO

5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. Lead optimization led to the discovery of compound 3a, which displayed potent inhibitory activities in biochemical and replicon assays [IC(50) (1b)<10nM; IC(50) (1a)=22 nM; EC(50) (1b)=5nM], good stability toward human liver microsomes (HLM t(1/2)>60 min), and high ratios of liver to plasma concentrations 12h after a single oral administration to rats.


Assuntos
Antivirais/síntese química , Antivirais/farmacocinética , Hepacivirus/efeitos dos fármacos , Piridazinas/síntese química , Piridazinas/farmacocinética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Animais , Antivirais/sangue , Antivirais/química , Técnicas de Química Combinatória , Desenho de Fármacos , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Piridazinas/sangue , Piridazinas/química , Ratos , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 18(14): 4181-5, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18554907

RESUMO

A novel series of HCV NS5B polymerase inhibitors comprising 1,1-dioxoisothiazoles and benzo[b]thiophene-1,1-dioxides were designed, synthesized, and evaluated. SAR studies guided by structure-based design led to the identification of a number of potent NS5B inhibitors with nanomolar IC(50) values. The most potent compound exhibited IC(50) less than 10nM against the genotype 1b HCV polymerase and EC(50) of 70 nM against a genotype 1b replicon in cell culture. The DMPK properties of selected compounds were also evaluated.


Assuntos
Antivirais/síntese química , Antivirais/farmacocinética , Inibidores Enzimáticos/farmacocinética , Tiazóis/síntese química , Tiofenos/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Genótipo , Humanos , Concentração Inibidora 50 , Modelos Químicos , Conformação Molecular , RNA Viral/metabolismo , Relação Estrutura-Atividade , Tiazóis/farmacocinética , Tiofenos/farmacocinética
18.
Bioorg Med Chem Lett ; 18(12): 3616-21, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18487044

RESUMO

Pyrrolo[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Structure-based design led to the discovery of compound 3 k, which displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; EC(50) (1b)=12 nM) as well as good stability towards human liver microsomes (HLM t(1/2)>60 min).


Assuntos
Antivirais/farmacologia , Piridazinas/farmacologia , Pirróis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
19.
Bioorg Med Chem Lett ; 18(16): 4628-32, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18662878

RESUMO

4-(1,1-Dioxo-1,4-dihydro-1lambda(6)-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-one analogs were discovered as a novel class of inhibitors of HCV NS5B polymerase. Structure-based design led to the identification of compound 3a that displayed potent inhibitory activities in biochemical and replicon assays (1b IC(50)<10 nM; 1b EC(50)=1.1 nM) as well as good stability toward human liver microsomes (HLM t(1/2)>60 min).


Assuntos
Química Farmacêutica/métodos , Hepacivirus/enzimologia , Microssomos Hepáticos/enzimologia , Piridazinas/síntese química , Piridazinas/farmacologia , Tiazinas/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Células CACO-2 , Cristalografia por Raios X/métodos , Desenho de Fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Modelos Químicos , Conformação Molecular , Piridazinas/química , Relação Estrutura-Atividade , Tiazinas/química , Tiazinas/farmacologia , Fatores de Tempo
20.
CPT Pharmacometrics Syst Pharmacol ; 7(9): 581-592, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30043511

RESUMO

A pharmacokinetic (PK) model was developed for nusinersen, an antisense oligonucleotide (ASO) that is the first approved treatment for spinal muscular atrophy (SMA). The model was built with data from 92 nonhuman primates (NHPs) following intrathecal doses (0.3-7 mg) and characterized the PK in cerebrospinal fluid (CSF), plasma, total spinal cord, brain, and pons. The estimated volumes were 13.6, 937, 4.5, 53.8, and 2.11 mL, respectively. Global sensitivity analysis demonstrated that the CSF-to-plasma drug distribution rate (0.09 hour-1 ) is a major determinant of the maximum nusinersen concentration in central nervous system (CNS) tissues. Physiological age-based and body weight-based allometric scaling was implemented with exponent values of -0.08 and 1 for the rate constants and the volume of distribution, respectively. Simulations of the scaled model were in agreement with clinical observations from 52 pediatric phase I PK profiles. The developed model can be used to guide the design of clinical trials with ASOs.


Assuntos
Modelos Biológicos , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/uso terapêutico , Animais , Feminino , Macaca fascicularis , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa