Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nucleic Acids Res ; 52(2): e7, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37994784

RESUMO

Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.


Assuntos
Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Sequência de Bases , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Análise de Sequência de RNA/métodos
2.
Plant Cell Physiol ; 64(2): 248-257, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36755428

RESUMO

Nicotiana benthamiana is widely used as a model plant for dicotyledonous angiosperms. In fact, the strains used in research are highly susceptible to a wide range of viruses. Accordingly, these strains are subject to plant pathology and plant-microbe interactions. In terms of plant-plant interactions, N. benthamiana is one of the plants that exhibit grafting affinity with plants from different families. Thus, N. benthamiana is a good model for plant biology and has been the subject of genome sequencing analyses for many years. However, N. benthamiana has a complex allopolyploid genome, and its previous reference genome is fragmented into 141,000 scaffolds. As a result, molecular genetic analysis is difficult to perform. To improve this effort, de novo whole-genome assembly was performed in N. benthamiana with Hifi reads, and 1,668 contigs were generated with a total length of 3.1 Gb. The 21 longest scaffolds, regarded as pseudomolecules, contained a 2.8-Gb sequence, occupying 95.6% of the assembled genome. A total of 57,583 high-confidence gene sequences were predicted. Based on a comparison of the genome structures between N. benthamiana and N. tabacum, N. benthamiana was found to have more complex chromosomal rearrangements, reflecting the age of interspecific hybridization. To verify the accuracy of the annotations, the cell wall modification genes involved in grafting were analyzed, which revealed not only the previously indeterminate untranslated region, intron and open reading frame sequences but also the genomic locations of their family genes. Owing to improved genome assembly and annotation, N. benthamiana would increasingly be more widely accessible.


Assuntos
Genes de Plantas , Nicotiana , Nicotiana/genética , Genômica , Genoma de Planta
3.
Plant Cell Physiol ; 63(11): 1720-1728, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36043692

RESUMO

The circadian clock, an internal time-keeping system with a period of about 24 h, coordinates many physiological processes with the day-night cycle. We previously demonstrated that BML-259 [N-(5-isopropyl-2-thiazolyl) phenylacetamide], a small molecule with mammal CYCLIN DEPENDENT KINASE 5 (CDK5)/CDK2 inhibition activity, lengthens Arabidopsis thaliana (Arabidopsis) circadian clock periods. BML-259 inhibits Arabidopsis CDKC kinase, which phosphorylates RNA polymerase II in the general transcriptional machinery. To accelerate our understanding of the inhibitory mechanism of BML-259 on CDKC, we performed structure-function studies of BML-259 using circadian period-lengthening activity as an estimation of CDKC inhibitor activity in vivo. The presence of a thiazole ring is essential for period-lengthening activity, whereas acetamide, isopropyl and phenyl groups can be modified without effect. BML-259 analog TT-539, a known mammal CDK5 inhibitor, did not lengthen the period nor did it inhibit Pol II phosphorylation. TT-361, an analog having a thiophenyl ring instead of a phenyl ring, possesses stronger period-lengthening activity and CDKC;2 inhibitory activity than BML-259. In silico ensemble docking calculations using Arabidopsis CDKC;2 obtained by a homology modeling indicated that the different binding conformations between these molecules and CDKC;2 explain the divergent activities of TT539 and TT361.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica de Plantas , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo
4.
J Plant Res ; 135(5): 693-701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834070

RESUMO

Plasmodesmata are unique channel structures in plants that link the fluid cytoplasm between adjacent cells. Plants have evolved these microchannels to allow trafficking of nutritious substances as well as regulatory factors for intercellular communication. However, tracking the behavior of plasmodesmata in real time is difficult because they are located inside tissues. Hence, a system was constructed to monitor the movement of substances by plasmodesmata using tobacco BY-2 cells, which are linearly organized cells, and a microfluidic device that traps them in place and facilitates observation. After targeting one cell for photobleaching, recovery of the lost H2B-GFP protein was detected within 200 min. No recovery was detected in that time frame by photobleaching the entire cell filaments. This suggested that the recovery of H2B-GFP protein was not due to de novo protein synthesis, but rather to translocation from neighboring cells. The transport of H2B-GFP protein was not observed when sodium chloride, a compound known to cause plasmodesmata closure, was present in the microfluid channel. Thus, using the microfluidic device and BY-2 cells, it was confirmed that the behavior of plasmodesmata could be observed in real time under controllable conditions.


Assuntos
Nicotiana , Plasmodesmos , Microfluídica , Permeabilidade , Plantas , Plasmodesmos/metabolismo , Nicotiana/metabolismo
5.
Plant J ; 103(2): 918-929, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32285535

RESUMO

Grafting techniques have been applied in studies of systemic, long-distance signaling in several model plants. Seedling grafting in Arabidopsis, known as micrografting, enables investigation of the molecular mechanisms of systemic signaling between shoots and roots. However, conventional micrografting requires a high level of skill, limiting its use. Thus, an easier user-friendly method is needed. Here, we developed a silicone microscaled device, the micrografting chip, to obviate the need for training and to generate less stressed and more uniformly grafted seedlings. The chip has tandemly arrayed units, each of which consists of a seed pocket for seed germination and a micro-path with pairs of pillars for hypocotyl holding. Grafting, including seed germination, micrografting manipulation and establishment of tissue reunion, is performed on the chip. Using the micrografting chip, we evaluated the effect of temperature and the carbon source on grafting, and showed that a temperature of 27°C and a sucrose concentration of 0.5% were optimal. We also used the chip to investigate the mechanism of systemic signaling of iron status using a quadruple nicotianamine synthase (nas) mutant. The constitutive iron-deficiency response in the nas mutant because of iron accumulation in shoots was significantly rescued by grafting of wild-type shoots or roots, suggesting that shoot- and root-ward translocation of nicotianamine-iron complexes and/or nicotianamine is essential for iron mobilization. Thus, our micrografting chip will promote studies of long-distance signaling in plants.


Assuntos
Arabidopsis/metabolismo , Transdução de Sinais , Dispositivos Lab-On-A-Chip , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plântula/metabolismo , Silicones
6.
Plant Cell Physiol ; 62(9): 1362-1371, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34252186

RESUMO

Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.


Assuntos
Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Plasmodesmos/fisiologia , Transplante
7.
Plant Cell Physiol ; 60(8): 1722-1733, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076773

RESUMO

Phytohormones of the strigolactone (SL) family have been characterized as negative regulators of lateral bud outgrowth and triggers of symbioses between plants and mycorrhizal fungi. SLs and their precursors are synthesized in root tips as well as along shoot and root vasculature; they either move shoot-wards and regulate plant architecture or are exuded from roots into the soil to establish mycorrhizal symbiosis. Owing to the difficulty in quantification of SL in shoot tissues because of low abundance, it is not yet clear how SL distribution in plants is regulated at short- and long-distances from SL biosynthetic and target tissues. To address this question, we grafted wild-type scions and rootstocks from different petunia mutants for SL biosynthesis/transport and investigated SL activity by quantifying lateral bud outgrowth in the main shoot. Based on these results, we show that (i) the previously reported petunia SL transporter PLEIOTROPIC DRUG RESISTANCE 1 (PDR1) directly accounts for short-distance SL transport and (ii) long-distance transport of SLs seems to be partially and not directly dependent on PDR1. These data suggest that the root-to-shoot transport of SLs occurs either via the vasculature bundle through transporters other than PDR1 or involves SL precursors that are not substrates of PDR1.


Assuntos
Lactonas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/genética , Petunia/fisiologia
8.
Plant Cell Physiol ; 59(8): 1621-1629, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562349

RESUMO

In many plants, timing of flowering is regulated by day length. In Arabidopsis, florigen, FLOWERING LOCUS T (FT) protein, is synthesized in leaf phloem companion cells in response to long days and is transported to the shoot apical meristem (SAM) through the phloem. The temporal aspects of florigen transportation have been studied in various plants by physiological experiments. Nevertheless, little is known about how FT protein transportation is regulated in Arabidopsis. In this study, we performed heat shock-based transient FT induction in a single leaf blade and detected the FT protein in the shoot apex by 2D-PAGE. We demonstrated that detectable amounts of FT were transported from the leaf to the shoot apex within 8 h, and subsequent FT-induced target gene expression was detected within 8-12 h. Furthermore, we identified three amino acid residues (V70, S76 and R83) where missense mutations led to reduced mobility. Interestingly, these FT variants lost only their transportation ability, but retained their flowering promotion capacity, suggesting that discrete amino acids are involved in flowering regulation and transport regulation. Since the interaction with FT-INTERACTING PROTEIN 1 (FTIP1) was not affected in these FT variants, we hypothesize that the three amino acid residues are not involved in the FTIP1-mediated pathway of uploading, but rather in the subsequent step(s) of FT transport.


Assuntos
Florígeno/metabolismo , Flores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo , Meristema/metabolismo , Mutação , Floema/metabolismo , Transporte Proteico/fisiologia
9.
Plant Cell Physiol ; 58(8): 1291-1301, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961994

RESUMO

Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Luz , Fotoperíodo , Desenvolvimento Vegetal , Transdução de Sinais , Solo/química
11.
Plant Cell Physiol ; 56(2): 311-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527829

RESUMO

Phloem is a conductive tissue that allocates nutrients from mature source leaves to sinks such as young developing tissues. Phloem also delivers proteins and RNA species, such as small RNAs and mRNAs. Intensive studies on plant systemic signaling revealed the essential roles of proteins and RNA species. However, many of their functions are still largely unknown, with the roles of transported mRNAs being particularly poorly understood. A major difficulty is the absence of an accurate and comprehensive list of mobile transcripts. In this study, we used a hetero-graft system with Nicotiana benthamiana as the recipient scion and Arabidopsis as the donor stock, to identify transcripts that moved long distances across the graft union. We identified 138 Arabidopsis transcripts as mobile mRNAs, which we collectively termed the mRNA mobilome. Reverse transcription-PCR, quantitative real-time PCR and droplet digital PCR analyses confirmed the mobility. The transcripts included potential signaling factors and, unexpectedly, more general factors. In our investigations, we found no preferred transcript length, no previously known sequence motifs in promoter or transcript sequences and no similarities between the level of the transcripts and that in the source leaves. Grafting experiments regarding the function of ERECTA, an identified transcript, showed that no function of the transcript mobilized. To our knowledge, this is the first report identifying transcripts that move over long distances using a hetero-graft system between different plant taxa.


Assuntos
Arabidopsis/genética , Nicotiana/genética , Transporte de RNA/genética , Análise de Sequência de RNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Xenoenxertos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
12.
J Plant Res ; 128(1): 27-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25516498

RESUMO

Signaling between cells, tissues and organs is essential for multicellular organisms to coordinate and adapt their development and growth to internal and environmental changes. Plants have evolved a plant-specific symplasmic pathway, called plasmodesmata, for efficient intercellular communication, in addition to the receptor-ligand-based apoplasmic pathway. Long-distance signaling between distant organs is enabled via the phloem tube system, where plasmodesmata contribute to phloem loading and unloading for photosynthate allocation. In addition to signaling by small molecules such as metabolites and phytohormones, the transport of proteins, small RNAs and mRNAs is also considered an important mechanism to achieve long-distance signaling in plants. Recent studies on phloem-mobile proteins and small RNAs have revealed their role in crucial physiological processes including flowering, systemic silencing and nutrient allocation. However, the biological role of mRNAs found in the phloem tube is not yet clear, though their mobility over long-distances has been well evidenced. To gain this knowledge, it is important to collect further information on mRNA profiles in the phloem translocation stream. In this review, I summarize the current approaches to identifying the mRNA population in the phloem translocation system, and discuss the possible role of short- and long-distance mRNA transport.


Assuntos
Floema/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Técnicas de Cultura de Tecidos
13.
Plants (Basel) ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611536

RESUMO

MYB98 is master regulator of the molecular network involved in pollen tube attraction. Until recently, it was unclear how this gene exhibits exclusively synergid cell-specific expression in ovule. Our recent study has established that a 16-bp-long SaeM element is crucial for its synergid cell-specific expression in ovule, and an 84-bp-long fragment harboring SaeM is sufficient to drive the process. In this study, we have developed a workflow to predict functional roles of potential transcription factors (TFs) putatively binding to the promoter region, taking MYB98 promoter as a test subject. After sequential assessment of co-expression pattern, network analysis, and potential master regulator identification, we have proposed a multi-TF model for MYB98 regulation. Our study suggests that ANL2, GT-1, and their respective homologs could be direct regulators of MYB98 and indicates that TCP15, TCP16, FRS9, and HB34 are likely master regulators of the majority of the TFs involved in its regulation. Comprehensive studies in the future are expected to offer more insights into such propositions. Developed workflow can be used while designing similar regulome-related studies for any other species and genes.

14.
Plant Signal Behav ; 19(1): 2331358, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38513064

RESUMO

Many previous studies have suggested that various plant hormones play essential roles in the grafting process. In this study, to understand the plant hormones that accumulate in the graft junctions, whether these are supplied from the scion or rootstock, and how these hormones play a role in the grafting process, we performed a hormonome analysis that accumulated in the incision site of the upper plants from the incision as "ungrafted scion" and lower plants from the incision as "ungrafted rootstock" in Nicotiana benthamiana. The results revealed that indole-3-acetic acid (IAA) and gibberellic acid (GA), which regulate cell division; abscisic acid (ABA) and jasmonic acid (JA), which regulate xylem formation; cytokinin (CK), which regulates callus formation, show different accumulation patterns in the incision sites of the ungrafted scion and rootstock. In addition, to try discussing the differences in the degree and speed of each event during the grafting process between intra- and inter-family grafting by determining the concentration and accumulation timing of plant hormones in the graft junctions, we performed hormonome analysis of graft junctions of intra-family grafted plants with N. benthamiana as scion and Solanum lycopersicum as rootstock (Nb/Sl) and inter-family grafted plants with N. benthamiana as scion and Arabidopsis thaliana as rootstock (Nb/At), using the ability of Nicotiana species to graft with many plant species. The results revealed that ABA and CK showed different accumulation timings; IAA, JA, and salicylic acid (SA) showed similar accumulation timings, while different accumulated concentrations in the graft junctions of Nb/Sl and Nb/At. This information is important for understanding the molecular mechanisms of plant hormones in the grafting process and the differences in molecular mechanisms between intra- and inter-family grafting.


Assuntos
Arabidopsis , Solanum lycopersicum , Reguladores de Crescimento de Plantas , Nicotiana , Ácido Abscísico
15.
Plant Phenomics ; 6: 0162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572468

RESUMO

Plants are exposed to a variety of environmental stress, and starvation of inorganic phosphorus can be a major constraint in crop production. In plants, in response to phosphate deficiency in soil, miR399, a type of microRNA (miRNA), is up-regulated. By detecting miR399, the early diagnosis of phosphorus deficiency stress in plants can be accomplished. However, general miRNA detection methods require complicated experimental manipulations. Therefore, simple and rapid miRNA detection methods are required for early plant nutritional diagnosis. For the simple detection of miR399, microfluidic technology is suitable for point-of-care applications because of its ability to detect target molecules in small amounts in a short time and with simple manipulation. In this study, we developed a microfluidic device to detect miRNAs from filtered plant extracts for the easy diagnosis of plant growth conditions. To fabricate the microfluidic device, verification of the amine-terminated glass as the basis of the device and the DNA probe immobilization method on the glass was conducted. In this device, the target miRNAs were detected by fluorescence of sandwich hybridization in a microfluidic channel. For plant stress diagnostics using a microfluidic device, we developed a protocol for miRNA detection by validating the sample preparation buffer, filtering, and signal amplification. Using this system, endogenous sly-miR399 in tomatoes, which is expressed in response to phosphorus deficiency, was detected before the appearance of stress symptoms. This early diagnosis system of plant growth conditions has a potential to improve food production and sustainability through cultivation management.

16.
Plant Physiol Biochem ; 207: 108350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199026

RESUMO

Salt stress is a recognized annihilating abiotic stress that has a significant impact on agricultural and horticulture crop productivity. Plant development faces three distinct dangers as a result of salt stress: oxidative stress, osmotic stress, and ionic toxicity. It has been shown that plants can forecast diurnal patterns using the circadian clock; moreover, they can manage their defensive mechanism for the detoxification of reactive oxygen species (ROS). Circadian rhythmicity in gene expression assembles transcription and translation feedback networks to govern plant shape, physiology, cellular and molecular activities. Both external and internal variables influence the systemic rhythm via input routes. The Malav Jyoti (MJ) and Delhi Green (DG) genotypes of spinach (Spinacia oleracea) were grown in the plant growth chamber. The chamber had an optimized temperature of 25 °C and humidity of 65% containing light emitting diode (LED) having Red: Blue: white (one side) and White fluorescent (other side) under salinity stress. The samples were collected on the basis of 4 h intervals of circadian hours (0 h, 4 h, 8 h and 12 h) during Day-10 and Day-20 of salt treatments. Under salt stress, the circadian and light-emitting diode-based strategy had a substantial influence on spinach's anti-oxidative responses, stomatal movement, CO2 assimilation, PS-I and II efficiency, phytochrome pigment efficiency, and photosynthesis. Based on the findings of the free radical scavenging enzyme tests, the photoperiodic hours for the proteome analysis were set to 11 am and 3 pm on Day-20. When compared to white fluorescent, this study found that LED has the capacity to influence the entrainment cues of the circadian clock in the cultivation of salt-sensitive spinach genotypes. According to our findings, changing the cellular scavenging mechanism and chloroplast proteome has increased the survival rate of spinach genotypes under LED when compared to white fluorescent.


Assuntos
Proteoma , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Proteoma/metabolismo , Cloroplastos/metabolismo , Estresse Fisiológico , Estresse Salino , Plantas/metabolismo , Compostos Fitoquímicos/metabolismo , Salinidade
17.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746097

RESUMO

Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.

18.
Hortic Res ; 10(6): uhad072, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303612

RESUMO

Grafting is a plant propagation technique widely used in agriculture. A recent discovery of the capability of interfamily grafting in Nicotiana has expanded the potential combinations of grafting. In this study, we showed that xylem connection is essential for the achievement of interfamily grafting and investigated the molecular basis of xylem formation at the graft junction. Transcriptome and gene network analyses revealed gene modules for tracheary element (TE) formation during grafting that include genes associated with xylem cell differentiation and immune response. The reliability of the drawn network was validated by examining the role of the Nicotiana benthamiana XYLEM CYSTEINE PROTEASE (NbXCP) genes in TE formation during interfamily grafting. Promoter activities of NbXCP1 and NbXCP2 genes were found in differentiating TE cells in the stem and callus tissues at the graft junction. Analysis of a Nbxcp1;Nbxcp2 loss-of-function mutant indicated that NbXCPs control the timing of de novo TE formation at the graft junction. Moreover, grafts of the NbXCP1 overexpressor increased the scion growth rate as well as the fruit size. Thus, we identified gene modules for TE formation at the graft boundary and demonstrated potential ways to enhance Nicotiana interfamily grafting.

19.
Mol Hortic ; 3(1): 13, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37789480

RESUMO

Phase transition and floral induction in citrus requires several years of juvenility after germination. Such a long period of juvenility has been a major hindrance to its genetic improvement program. Studies have shown that miR156 along with its downstream genes SQUAMOSA PROMOTER BINDING PROTEINS (SBP) and SBP-LIKE (SPL) mediate the phase transition and floral induction process in plants. Our current study has systematically analyzed SPLs in 15 different citrus-related species, systematically annotated them based on their close homology to their respective Arabidopsis orthologs, and confirmed the functional attributes of the selected members in floral precocity. The majority of the species harbored 15 SPLs. Their cis-element assessment suggested the involvement of the SPLs in diverse developmental and physiological processes in response to different biotic and abiotic cues. Among all, SPL5, SPL9, and SPL11 stood out as consistently differentially expressed SPLs in the adult and young tissues of different citrus-related species. Independent overexpression of their F. hindsii orthologs (FhSPL5, FhSPL9, and FhSPL11) brought an enhanced expression of endogenous FLOWERING LOCUS T leading to the significantly precocious flowering in transgenic Arabidopsis lines. Future study of the genes in the citrus plant itself is expected to conclude the assessments made in the current study.

20.
Sci Adv ; 9(22): eadf4803, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267361

RESUMO

Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.


Assuntos
Plantas , Tylenchoidea , Animais , Transdução de Sinais , Tylenchoidea/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa