Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biotechnol Bioeng ; 116(12): 3189-3199, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448828

RESUMO

Wastewater treatment using encapsulated biomass is a promising approach for high-rate resource recovery. Encapsulation matrices can be customized to achieve desired biomass retention and mass transport performance. This, in turn, facilitates treatment of different waste streams. In this study, a model was developed to describe calcium-alginate beads encapsulating hydrogen-producing biomass, with the goal of enabling appropriate a priori customization of the system. The model was based on a classic diffusion-reaction model, but also included the growth of encapsulated biomass and product inhibition. Experimental data were used to verify the model, which accurately described the effect of hydraulic retention time, bead size, and feed concentration on resource (hydrogen) recovery from brewery wastewater. Sensitivity analyses revealed that the hydrogen production rate was insensitive to substrate diffusivity and bead size, but sensitive to the substrate partition coefficient, initial encapsulated biomass concentration, and the total volume of beads in the reactor, demonstrating that this system was growth-limited rather than diffusion-limited under the tested conditions. Because the model quantifies the relationship between the hydrogen production rate and various input and operating parameters, it should be possible to extend the model to determine the most cost-effective system for optimal performance with a given waste stream.


Assuntos
Alginatos/química , Biomassa , Células Imobilizadas/metabolismo , Hidrogênio/metabolismo , Modelos Biológicos , Cápsulas
2.
Environ Sci Technol ; 52(18): 10433-10440, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30148610

RESUMO

Perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants, yet knowledge of their biological effects and mechanisms of action is limited. The highest aqueous PFAS concentrations are found in areas where bacteria are relied upon for functions such as nutrient cycling and contaminant degradation, including fire-training areas, wastewater treatment plants, and landfill leachates. This research sought to elucidate one of the mechanisms of action of PFAS by studying their uptake by bacteria and partitioning into model phospholipid bilayer membranes. PFAS partitioned into bacteria as well as model membranes (phospholipid liposomes and bilayers). The extent of incorporation into model membranes and bacteria was positively correlated to the number of fluorinated carbons. Furthermore, incorporation was greater for perfluorinated sulfonates than for perfluorinated carboxylates. Changes in zeta potential were observed in liposomes but not bacteria, consistent with PFAS being incorporated into the phospholipid bilayer membrane. Complementary to these results, PFAS were also found to alter the gel-to-fluid phase transition temperature of phospholipid bilayers, demonstrating that PFAS affected lateral phospholipid interactions. This investigation compliments other studies showing that sulfonated PFAS and PFAS with more than seven fluorinated carbons have a higher potential to accumulate within biota than carboxylated and shorter-chain PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bactérias , Biota , Bicamadas Lipídicas
3.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087526

RESUMO

Organohalide-respiring bacteria can be difficult to enrich and isolate, which can limit research on these important organisms. The goal of this research was to develop a method to rapidly (minutes to days) enrich these organisms from a mixed community. The method presented is based on the hypothesis that organohalide-respiring bacteria would be more hydrophobic than other bacteria as they dehalogenate hydrophobic compounds. The method developed tests this hypothesis by separating a portion of putative organohalide-respiring bacteria, those phylogenetically related to Dehalococcoides mccartyi, at the interface between a hydrophobic organic solvent and an aqueous medium. This novel partial separation technique was tested with a polychlorinated biphenyl-enriched sediment-free culture, a tetrachloroethene-enriched digester sludge culture, and uncontaminated lake sediment. Significantly higher fractions, up to 20.4 times higher, of putative organohalide-respiring bacteria were enriched at the interface between the medium and either hexadecane or trichloroethene. The selective partial separation of these putative organohalide-respiring bacteria occurred after 20 min, strongly suggesting that the separation was a result of physical-chemical interactions between the cell surface and hydrophobic solvent. Dechlorination activity postseparation was verified by the production of cis-dichloroethene when amended with tetrachloroethene. A longer incubation time of 6 days prior to separation with trichloroethene increased the total number of putative organohalide-respiring bacteria. This method provides a way to quickly separate some of the putative organohalide-respiring bacteria from other bacteria, thereby improving our ability to study multiple and different bacteria of potential interest and improving knowledge of these bacteria.IMPORTANCE Organohalide-respiring bacteria, bacteria capable of respiring chlorinated contaminants, can be difficult to enrich, which can limit their predictable use for the bioremediation of contaminated sites. This paper describes a method to quickly separate Dehalococcoides-like bacteria, a group of organisms containing organohalide-respiring bacteria, from other bacteria in a mixed community. From this work, Dehalococcoides-like bacteria appear to have a hydrophobic cell surface, facilitating a rapid (20 min) partial separation from a mixed culture at the surface of a hydrophobic liquid. This method was verified in a polychlorinated biphenyl-enriched sediment-free culture, an anaerobic digester sludge, and uncontaminated sediment. The method described can drastically reduce the amount of time required to partially separate Dehalococcoides-like bacteria from a complex mixed culture, improving researchers' ability to study these important bacteria.


Assuntos
Biodegradação Ambiental , Chloroflexi/metabolismo , Dicloretos de Etileno/metabolismo , Bifenilos Policlorados/metabolismo , Esgotos/microbiologia , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Chloroflexi/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Halogenação , Interações Hidrofóbicas e Hidrofílicas
4.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28600313

RESUMO

The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste.IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Cobre/metabolismo , Sedimentos Geológicos/microbiologia , Níquel/metabolismo , Sulfetos/metabolismo , Bactérias/classificação , Bactérias/genética , Sedimentos Geológicos/química , Resíduos Industriais/análise , Ferro/metabolismo , Mineração , Minnesota , Filogenia
5.
Environ Sci Technol ; 50(1): 36-45, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26605430

RESUMO

Understanding the sources, transport, and spatiotemporal variability of contaminants of emerging concern (CECs) is important for understanding risks and developing monitoring and mitigation strategies. This study used mass balances to compare wastewater treatment plant (WWTP) and upstream sources of 16 CECs to a mixed-use watershed in Minnesota, under different seasonal and hydrological conditions. Three distinct CEC groups emerged with respect to their source proportionality and instream behavior. Agricultural herbicides and daidzein inputs were primarily via upstream routes with the greatest loadings and concentrations during high flows. Trimethoprim, mecoprop, nonprescription pharmaceuticals, and personal care products entered the system via balanced/mixed pathways with peak loadings and concentrations in high flows. Carbaryl, 4-nonylphenol, and the remaining prescription pharmaceuticals entered the system via WWTP effluent with relatively stable loadings across sampling events. Mass balance analysis based on multiple sampling events and sites facilitated CEC source comparisons and may therefore prove to be a powerful tool for apportioning sources and exploring mitigation strategies.


Assuntos
Monitoramento Ambiental/métodos , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Geografia , Minnesota , Purificação da Água
6.
Environ Sci Technol ; 49(1): 498-503, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25454582

RESUMO

Understanding the parameters that drive E1 degradation is necessary to improve existing wastewater treatment systems and evaluate potential treatment options. Organic matter quality could be an important parameter. Microbial communities grown from activated sludge seeds using different dissolved organic matter sources were tested for E1 degradation rates. Synthetic wastewater was aged, filter-sterilized, and used as a carbon and energy source to determine if recalcitrant organic carbon enhances E1 degradation. Higher E1 degradation was observed by biomass grown on 8 d old synthetic wastewater compared to biomass grown on fresh synthetic wastewater (P = 0.033) despite much lower concentrations of bacteria. Minimal or no E1 degradation was observed in biomass grown on 2 d old synthetic wastewater. Organic carbon analyses suggest that products of cell lysis or microbial products released under starvation stress stimulate E1 degradation. Additional water sources were also tested: lake water, river water, and effluents from a municipal wastewater treatement plant and a treatment wetland. E1 degradation was only observed in biomass grown in treatment effluent. Nitrogen, dissolved organic carbon, and trace element concentrations were not causative factors for E1 degradation. In both experiments, spectrophotometric analyses reveal degradation of E1 is associated with microbially derived organic carbon but not general recalcitrance.


Assuntos
Bactérias/metabolismo , Biomassa , Estrona/metabolismo , Compostos Orgânicos/metabolismo , Poluentes Químicos da Água/metabolismo , Carbono/metabolismo , Filtração , Água Doce , Nitrogênio , Esgotos , Fatores de Tempo , Águas Residuárias
7.
Appl Environ Microbiol ; 80(3): 1210-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296507

RESUMO

Although the abundance and diversity of natural organochlorines are well established, much is still unknown about the degradation of these compounds. Triplicate microcosms were used to determine whether, and which, bacterial communities could dechlorinate two chlorinated xanthones (2,7-dichloroxanthone and 5,7-dichloro-1,3-dihydroxylxanthone), analogues of a diverse class of natural organochlorines. According to quantitative-PCR (qPCR) results, several known dechlorinating genera were either not present or not enriched during dechlorination of the xanthones. Denaturing gradient gel electrophoresis, however, indicated that several Firmicutes were enriched in the dechlorinating cultures compared to triplicate controls amended with nonchlorinated xanthones. One such group, herein referred to as the Gopher group, was further studied with a novel qPCR method that confirmed enrichment of Gopher group 16S rRNA genes in the dechlorinating cultures. The enrichment of the Gopher group was again tested with two new sets of triplicate microcosms. Enrichment was observed during chlorinated xanthone dechlorination in one set of these triplicate microcosms. In the other set, two microcosms showed clear enrichment while a third did not. The Gopher group is a previously unidentified group of Firmicutes, distinct from but related to the Dehalobacter and Desulfitobacterium genera; this group also contains clones from at least four unique cultures capable of dechlorinating anthropogenic organochlorines that have been previously described in the literature. This study suggests that natural chlorinated xanthones may be effective biostimulants to enhance the remediation of pollutants and highlights the idea that novel genera of dechlorinators likely exist and may be active in bioremediation and the natural cycling of chlorine.


Assuntos
Cloro/metabolismo , Bactérias Gram-Positivas/metabolismo , Hidrocarbonetos Clorados/metabolismo , Xantonas/metabolismo , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
8.
Environ Sci Technol ; 48(13): 7393-400, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24915110

RESUMO

Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.


Assuntos
Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Triclosan/farmacologia , Anaerobiose/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Archaea/genética , Bactérias/genética , Exposição Ambiental , Genes Arqueais , Genes Bacterianos , Metano/biossíntese , RNA Ribossômico 16S/genética
9.
Appl Microbiol Biotechnol ; 98(14): 6233-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24846732

RESUMO

A large number of chlorinated contaminants are found in wastewater, originating from domestic and industrial sources and from runoff captured by sewers. The presence of some of these contaminants, such as the pharmaceutical diclofenac, has recently been documented, whereas the presence of other contaminants, such as polychlorinated biphenyls, has been known for many years. This mini-review discusses the current state of knowledge regarding the degradation and outflow of chlorinated contaminants from municipal wastewater treatment plants (WWTPs) and the known physiologies of bacteria capable of degrading these contaminants, and summarizes current knowledge gaps as a way to focus future research efforts.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Clorados/metabolismo , Águas Residuárias/química , Poluentes da Água/metabolismo , Purificação da Água/métodos , Biotransformação
10.
Environ Sci Technol ; 47(20): 11545-53, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24047188

RESUMO

Despite reports in the literature of superior contaminant degradation in the root-zone of plants, this phenomenon, known as the rhizosphere effect, is poorly understood. We investigated whether root exudates could enhance desorption of residual pollutants, thus improving bioavailability and subsequent biodegradation potential. Root exudates were harvested from three species of hydroponically grown plants, and artificial root exudates (AREs) were created using a literature recipe. Aliquots of the exudates were metabolized by soil bacteria to investigate whether biotransformed exudates exhibited different chemical characteristics or had different effects on contaminant bioavailability than 'raw exudates.' Slurries of naphthalene-aged soil containing raw exudates had a significantly lower soil-water distribution coefficient (Kd) than slurries with metabolized exudates or no-exudate controls, exhibiting median reductions of 50% and 55%, respectively. Raw exudates had a significantly lower surface tension while not increasing overall solubility, indicating the presence of surface-active compounds below the critical micelle concentration; this is a newly observed mechanism of the rhizosphere effect. Exudate samples were characterized by specific UV absorbance, spectral slope, fluorescence index, and excitation-emission matrices. Substantial changes in organic carbon character pre- and postmetabolism, and between harvested exudates and AREs, suggest that AREs are not chemically representative of plant root exudates. Overall, we present evidence that enhanced contaminant desorption in the presence of exudates provides an abiotic contribution to the rhizosphere effect.


Assuntos
Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Poluentes do Solo/isolamento & purificação , Adsorção , Biodegradação Ambiental , Cyperaceae/metabolismo , Fabaceae/metabolismo , Naftalenos/isolamento & purificação , Poaceae/metabolismo , Solubilidade , Soluções , Espectrometria de Fluorescência , Tensão Superficial
11.
Environ Sci Technol ; 47(21): 12359-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24117277

RESUMO

The effects of organic carbon concentrations and loading on the degradation of estrone (E1) were examined under various conditions in batch reactors and membrane-coupled bioreactors (MBRs). Experiments examined effects on individual microorganisms (substrate competition and growth) and on the whole community (selection). Substrate competition with organic carbon (competitive inhibition and catabolic repression) was not a factor in E1 degradation (P = 0.19 and 0.29 for two different analyses). Conversely, addition of organic carbon increased E1 degradation rates, attributable to biomass growth in feast-famine reactors over a five-day period (P = 0.016). Subsequently, however, community dynamics controlled E1 degradation rates, with other organisms outcompeting E1 degraders. More moderate but sustained increases in E1 degradation rates were observed under starvation conditions. Low influent organic carbon strength was detrimental to E1 degradation in MBRs, where organic carbon concentration and loading were decoupled (P = 0.018). These results point to the importance of multiple substrate utilizers in E1 degradation. They also suggest that while initial growth of biomass depends on the presence of sufficient organic carbon, further enrichment under starvation conditions may improve E1 degradation capability via the growth and/or stimulation of multiple substrate utilizers rather than heterotrophs characterized by an r-strategist growth regime.


Assuntos
Carbono/farmacologia , Estrona/análise , Compostos Orgânicos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodegradação Ambiental/efeitos dos fármacos , Biodiversidade , Análise da Demanda Biológica de Oxigênio , Biomassa , Reatores Biológicos/microbiologia , DNA Espaçador Ribossômico/genética , Eliminação de Resíduos Líquidos
12.
Microb Biotechnol ; 16(11): 2094-2104, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37750468

RESUMO

Encapsulated systems have been widely used in environmental applications to selectively retain and protect microorganisms. The permeable matrix used for encapsulation, however, limits the accessibility of existing analytical methods to study the behaviour of the encapsulated microorganisms. Here, we present a novel method that overcomes these limitations and enables direct observation and enumeration of encapsulated microbial colonies over a range of spatial and temporal scales. The method involves embedding, cross-sectioning, and analysing the system via fluorescence in situ hybridization and retains the structure of encapsulants and the morphology of encapsulated colonies. The major novelty of this method lies in its ability to distinguish between, and subsequently analyse, multiple microorganisms within a single encapsulation matrix across depth. Our results demonstrated the applicability and repeatability of this method with alginate-encapsulated pure (Nitrosomonas europaea) and enrichment cultures (anammox enrichment). The use of this method can potentially reveal interactions between encapsulated microorganisms and their surrounding matrix, as well as quantitatively validate predictions from mathematical models, thereby advancing our understanding of microbial ecology in encapsulated or even biofilm systems and facilitating the optimization of these systems.


Assuntos
Alginatos , Biofilmes , Hibridização in Situ Fluorescente
13.
Appl Environ Microbiol ; 78(2): 393-401, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22101035

RESUMO

The phylum Chloroflexi contains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of these Chloroflexi in uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number of Dehalococcoides-like Chloroflexi 16S rRNA genes present. Dehalococcoides-like Chloroflexi populations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number of Dehalococcoides-like Chloroflexi 16S rRNA genes positively correlated with [organochlorine]/TOC while the number of Bacteria 16S rRNA genes did not. Dehalococcoides-like Chloroflexi were also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiring Chloroflexi are widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiring Chloroflexi may play an integral role in the biogeochemical chlorine cycle.


Assuntos
Chloroflexi/isolamento & purificação , Chloroflexi/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Microbiologia do Solo , Carga Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
14.
Environ Sci Technol ; 46(2): 995-1002, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22175538

RESUMO

Bioretention cells are increasingly popular in low-impact development as a means to sustainably mitigate the environmental problems associated with stormwater runoff. Yet, much remains to be known regarding the removal and ultimate fate of pollutants such as petroleum hydrocarbons in bioretention cells. In this work, laboratory-scale bioretention cells were constructed inside sealed glass columns. The columns were periodically spiked with (14)C-naphthalene over a 5-month period and the fate of this representative hydrocarbon and the influence of vegetation on naphthalene fate was studied. Three column setups were used: one planted with a legume (Purple Prairie Clover, Dalea purpureum), one planted with grass (Blue-Joint Grass, Calamagrostis canadensis), and one unplanted (i.e., control). Overall naphthalene removal efficiency was 93% for the planted columns and 78% for the control column. Adsorption to soil was the dominant naphthalene removal mechanism (56-73% of added naphthalene), although mineralization (12-18%) and plant uptake (2-23%) were also important. Volatilization was negligible (<0.04%). Significant enrichment of naphthalene-degrading bacteria occurred due to contaminant exposure and plant growth as evidenced by increased biodegradation activity and increased naphthalene dioxygenase gene concentrations in the bioretention media. This research suggests that bioretention is a viable solution for sustainable petroleum hydrocarbon removal from stormwater, and that vegetation can enhance overall performance and stimulate biodegradation.


Assuntos
Reatores Biológicos , Conservação dos Recursos Naturais , Naftalenos/química , Chuva , Adsorção , Radioisótopos de Carbono , Fabaceae , Poaceae , Solo/química , Poluentes do Solo/química , Volatilização , Gerenciamento de Resíduos , Movimentos da Água , Poluição da Água/prevenção & controle , Purificação da Água
15.
Environ Sci Technol ; 46(18): 10137-44, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22873515

RESUMO

Biodegradable organic carbon is often added to aquifers to stimulate microbial reduction of oxidized contaminants. This carbon also stimulates fermenters, which generate important metabolites that can fuel contaminant reduction and may enhance dissolution of hydrophobic compounds. Therefore, understanding how different methods of carbon addition affect the fermentative community will enable design of more effective remediation strategies. Our research objective was to evaluate the microbial communities that developed in model aquifer columns in response to pulsed or continuous molasses input. Results indicated that the continuously fed column produced relatively low concentrations of metabolic intermediates and had a greater proportion of Bacteria and methanogens, as measured by quantitative polymerase chain reaction, near the column inlet. In contrast, the pulsed-fed column generated periodic high concentrations of metabolic intermediates, with Bacteria and methanogens distributed throughout the length of the column. The community structures of Bacteria and Archaea, measured via automated ribosomal intergenic spacer analysis, in the pulsed-fed column were significantly different from those in the control column (not fed). The microbial community composition of the continuously fed column, however, became increasingly similar to the control column along the column length. These results demonstrate that a strategy of pulsed carbon addition leads to activity that is associated with functional instability, in terms of the production of periodic pulses of fermentation products and changing carbon concentration, and may be advantageous for remediation by producing large quantities of beneficial intermediates and resulting in more homogenously distributed biomass.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Água Subterrânea/microbiologia , Melaço/microbiologia , Archaea/genética , Bactérias/genética , Biodegradação Ambiental , DNA Arqueal/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Fermentação
17.
Water Res ; 208: 117857, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823083

RESUMO

Encapsulation is a promising technology to retain and protect autotrophs for biological nitrogen removal. One-dimensional biofilm models have been used to describe encapsulated systems; they do not, however, incorporate chemical sorption to the encapsulant nor do they adequately describe cell growth and distribution within the encapsulant. In this research we developed a new model to describe encapsulated growth and activity of Nitrosomonas europaea, incorporating ammonium sorption to the alginate encapsulant. Batch and continuous flow reactors were used to verify the simulation results. Quantitative PCR and cross-section fluorescence in situ hybridization were used to analyze the growth and spatial distribution of the encapsulated cells within alginate. Preferential growth of Nitrosomonas near the surface of the encapsulant was predicted by the model and confirmed by experiments. The modeling and experimental results also suggested that smaller encapsulants with a larger surface area to volume ratio would improve ammonia oxidation. Excessive aeration caused the breakage of the encapsulant, resulting in unpredicted microbial release and washout. Overall, our modeling approach is flexible and can be used to engineer and optimize encapsulated systems for enhanced biological nitrogen removal. Similar modeling approaches can be used to incorporate sorption of additional species within an encapsulant, additional nitrogen-converting microorganisms, and the use of other encapsulation materials.


Assuntos
Nitrosomonas europaea , Alginatos , Amônia , Reatores Biológicos , Hibridização in Situ Fluorescente , Nitritos , Nitrogênio , Nitrosomonas , Oxirredução
18.
FEMS Microbiol Ecol ; 98(6)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35511595

RESUMO

Bacteria capable of dehalogenation via reductive or hydrolytic pathways are ubiquitous. Little is known, however, about the prevalence of bacterial dechlorination in deep terrestrial environments with a limited carbon supply. In this study we analyzed published genomes from three deep terrestrial subsurface sites: a deep aquifer in Western Siberia, the Sanford Underground Research Facility in South Dakota, USA, and the Soudan Underground Iron Mine (SUIM) in Minnesota, USA to determine if there was evidence to suggest that microbial dehalogenation was possible in these environments. Diverse dehalogenase genes were present in all analyzed metagenomes, with reductive dehalogenase and haloalkane dehalogenase genes the most common. Taxonomic analysis of both hydrolytic and reductive dehalogenase genes was performed to explore their affiliation; this analysis indicated that at the SUIM site, hydrolytic dehalogenase genes were taxonomically affiliated with Marinobacter species. Because of this affiliation, experiments were also performed with Marinobacter subterrani strain JG233 ('JG233'), an organism containing three predicted hydrolytic dehalogenase genes and isolated from the SUIM site, to determine whether hydrolytic dehalogenation was an active process and involved in growth on a chlorocarboxylic acid. Presence of these genes in genome appears to be functional, as JG233 was capable of chloroacetate dechlorination with simultaneous chloride release. Stable isotope experiments combined with confocal Raman microspectroscopy demonstrated that JG233 incorporated carbon from 13C-chloroacetate into its biomass. These experiments suggest that organisms present in these extreme and often low-carbon environments are capable of reductive and hydrolytic dechlorination and, based on laboratory experiments, may use this capability as a competitive advantage by utilizing chlorinated organic compounds for growth, either directly or after dechlorination.


Assuntos
Carbono , Cloro , Bactérias , Biodegradação Ambiental , Carbono/metabolismo , Cloretos/metabolismo , Cloro/metabolismo , Cloroacetatos , Halogênios/metabolismo
19.
Environ Toxicol Chem ; 41(2): 369-381, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939696

RESUMO

Contaminants of emerging concern (CECs) are ubiquitous in aquatic environments across all continents and are relatively well known in the developed world. However, few studies have investigated their presence and biological effects in low- and middle-income countries. We provide a survey of CEC presence in the Volta River, Ghana, and examine the microbial consequences of anthropogenic activities along this economically and ecologically important African river. Water and sediment samples were taken by boat or from shore at 14 sites spanning 118 km of river course from the Volta estuary to the Akosombo dam. Sample extracts were prepared for targeted analysis of antimicrobial CECs, N,N-diethyl-meta-toluamide, and per- and polyfluoroalkyl substances (PFAS; water only). Concurrent samples were extracted to characterize the microbial community and antibiotic-resistant genes (ARGs). Antibiotics and PFAS (PFAS, 2-20 ng/L) were found in all water samples; however, their concentrations were usually in the low nanograms per liter range and lower than reported for other African, European, and North American studies. N,N-Diethyl-meta-toluamide was present in all samples. The number of different genes detected (between one and 10) and total ARG concentrations varied in both water (9.1 × 10-6 to 8.2 × 10-3 ) and sediment (2.2 × 10-4 to 5.3 × 10-2 ), with increases in gene variety at sites linked to urban development, sand mining, agriculture, and shellfish processing. Total ARG concentration spikes in sediment samples were associated with agriculture. No correlations between water quality parameters, CEC presence, and/or ARGs were noted. The presence of CECs in the lower Volta River highlights their global reach. The overall low concentrations of CECs detected is encouraging and, coupled with mitigation measures, can stymie future CEC pollution in the Volta River. Environ Toxicol Chem 2022;41:369-381. © 2021 SETAC.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Agricultura , Aquicultura , Monitoramento Ambiental , Fluorocarbonos/análise , Gana , Rios , Reforma Urbana , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 781: 146719, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33812097

RESUMO

This study aimed to understand the effect of different dissolved oxygen (DO) concentrations on the abundance and performance of nitrifying bacteria in full-scale wastewater treatment bioreactors, particularly during the winter when nitrifying bacterial activity is often negligible. Biomass samples were collected from three parallel full-scale bioreactors with low DO concentrations (<1.3 mg/ L) and from two full-scale bioreactors with higher DO concentrations (~4.0 and ~2.3 mg/ L). The relative abundance of nitrifying bacteria was determined by sequencing of PCR-amplified 16S rRNA gene fragments. In the three bioreactors with low DO concentrations, effluent ammonia concentrations sharply increased with a decline in temperature below approximately 17 °C, while the bioreactors with high DO concentrations showed stable nitrification regardless of temperature. Even with the decline in nitrification during the winter in the three low DO bioreactors, the relative abundance of ammonia oxidizing bacteria (mostly Nitrosomonas spp.) was curiously maintained. The relative abundance of nitrite oxidizing bacteria was similarly maintained, although there were substantial seasonal fluctuations in the relative abundance values of Nitrospira spp. versus Nitrotoga spp. This research suggests that nitrification activity can be controlled during the winter via DO to produce better effluent quality with high DO concentrations or to reduce aeration costs with a concomitant decline in nitrification activity.


Assuntos
Reatores Biológicos , Purificação da Água , Amônia , Bactérias/genética , Nitrificação , Nitritos , Oxirredução , Oxigênio , RNA Ribossômico 16S/genética , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa