Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738899

RESUMO

Mediator is a conserved coregulator playing a key role in RNA polymerase (Pol) II transcription. Mediator also links transcription and nucleotide excision repair (NER) via a direct contact with Rad2/ERCC5(XPG) endonuclease. In this work, we analyzed the genome-wide distribution of Rad26/ERCC6(CSB) and Rad1-Rad10/ERCC4(XPF)-ERCC1, addressing the question of a potential link of these proteins with Mediator and Pol II in yeast Saccharomyces cerevisiae Our genomic analyses reveal that Rad1-Rad10 and Rad26 are present on the yeast genome in the absence of genotoxic stress, especially at highly transcribed regions, with Rad26 binding strongly correlating with that of Pol II. Moreover, we show that Rad1-Rad10 and Rad26 colocalize with Mediator at intergenic regions and physically interact with this complex. Using kin28 TFIIH mutant, we found that Mediator stabilization on core promoters leads to an increase in Rad1-Rad10 chromatin binding, whereas Rad26 occupancy follows mainly a decrease in Pol II transcription. Combined with multivariate analyses, our results show the relationships between Rad1-Rad10, Rad26, Mediator, and Pol II, modulated by the changes in binding dynamics of Mediator and Pol II transcription. In conclusion, we extend the Mediator link to Rad1-Rad10 and Rad26 NER proteins and reveal important differences in their dependence on Mediator and Pol II. Rad2 is the most dependent on Mediator, followed by Rad1-Rad10, whereas Rad26 is the most closely related to Pol II. Our work thus contributes to new concepts of the functional interplay between transcription and DNA repair machineries, which are relevant for human diseases including cancer and XP/CS syndromes.

2.
Genes Dev ; 30(18): 2119-2132, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27688401

RESUMO

Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts.


Assuntos
Complexo Mediador/metabolismo , Regiões Promotoras Genéticas/fisiologia , Saccharomyces cerevisiae/fisiologia , Fator de Transcrição TFIIB/metabolismo , Cromatina/metabolismo , Complexo Mediador/genética , Mutação , Ligação Proteica/genética , Multimerização Proteica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 47(17): 8988-9004, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31299084

RESUMO

Transcription and maintenance of genome integrity are fundamental cellular functions. Deregulation of transcription and defects in DNA repair lead to serious pathologies. The Mediator complex links RNA polymerase (Pol) II transcription and nucleotide excision repair via Rad2/XPG endonuclease. However, the functional interplay between Rad2/XPG, Mediator and Pol II remains to be determined. In this study, we investigated their functional dynamics using genomic and genetic approaches. In a mutant affected in Pol II phosphorylation leading to Mediator stabilization on core promoters, Rad2 genome-wide occupancy shifts towards core promoters following that of Mediator, but decreases on transcribed regions together with Pol II. Specific Mediator mutations increase UV sensitivity, reduce Rad2 recruitment to transcribed regions, lead to uncoupling of Rad2, Mediator and Pol II and to colethality with deletion of Rpb9 Pol II subunit involved in transcription-coupled repair. We provide new insights into the functional interplay between Rad2, Mediator and Pol II and propose that dynamic interactions with Mediator and Pol II are involved in Rad2 loading to the chromatin. Our work contributes to the understanding of the complex link between transcription and DNA repair machineries, dysfunction of which leads to severe diseases.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Genoma Fúngico , Humanos , Complexo Mediador/genética , Modelos Moleculares , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Phys Rev Lett ; 121(15): 159901, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362797

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.118.078103.

5.
Phys Rev Lett ; 118(7): 078103, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256894

RESUMO

Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior-in and of itself-results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

6.
Biophys J ; 105(6): 1336-45, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24047984

RESUMO

Catch bonds are cellular receptor-ligand pairs whose lifetime, counterintuitively, increases with increasing load. Although their existence was initially pure theoretical speculation, recent years have seen several experimental demonstrations of catch-bond behavior in biologically relevant and functional protein-protein bonds. Particularly notable among these established catch-bond formers is the integrin α5ß1, the primary receptor for fibronectin and, as such, a crucial determinant for the characteristics of the mechanical coupling between cell and matrix. In this work, we explore the implications of single catch-bond characteristics for the behavior of a load-sharing cluster of such bonds: These clusters are shown to possess a regime of strengthening with increasing applied force, similar to the manner in which focal adhesions become selectively reinforced. Our results may shed new light on the fundamental processes that allow cells to sense and respond to the mechanical properties of their environment and in particular show how single focal adhesions may act, autonomously, as local rigidity sensors.


Assuntos
Fenômenos Mecânicos , Modelos Biológicos , Fibras de Estresse/metabolismo , Actinas/metabolismo , Fenômenos Biomecânicos , Integrina alfa5beta1/metabolismo , Ligantes , Processos Estocásticos
7.
Phys Rev E ; 103(3-1): 032402, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862804

RESUMO

Focal adhesions are the loci of cellular adhesion to the extracellular matrix. At these sites, various integrins forge connections between the intracellular cytoskeleton and the outside world; large patches of multiple types of integrins together grip hold of collagen, fibronectin, and other extracellular matrix components. A single focal adhesion will likely contain bonds whose lifetime increases with applied load (catch bonds), and bonds whose lifetime decreases with applied load (slip bonds). Prior work suggests that the combination of different types of integrins is essential for focal adhesion stability and mechanosensory functionality. In the present work, we investigate numerically the interplay between two distinct types of bonds, and we ask how the presence of slip bonds, in the same focal integrin cluster, augments the collective behavior of the catch bonds. We show that mixing these two components may increase the low-force mechanical integrity that may be lacking in pure-catch adhesions, while preserving the potential to strengthen the entire adhesion when a force is applied. We investigate the spatial distribution in mixed-integrin focal adhesions, and we show that the differential response to loading leads, via an excluded volume interaction, to a dependence of the individual integrin diffusivities on the applied load, an effect that has been reported in experiments.


Assuntos
Adesões Focais , Matriz Extracelular , Humanos , Integrinas , Fenômenos Mecânicos
8.
Genome Biol ; 21(1): 125, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456659

RESUMO

Genome replication mapping methods profile cell populations, masking cell-to-cell heterogeneity. Here, we describe FORK-seq, a nanopore sequencing method to map replication of single DNA molecules at 200-nucleotide resolution. By quantifying BrdU incorporation along pulse-chased replication intermediates from Saccharomyces cerevisiae, we orient 58,651 replication tracks reproducing population-based replication directionality profiles and map 4964 and 4485 individual initiation and termination events, respectively. Although most events cluster at known origins and fork merging zones, 9% and 18% of initiation and termination events, respectively, occur at many locations previously missed. Thus, FORK-seq reveals the full extent of cell-to-cell heterogeneity in DNA replication.


Assuntos
Replicação do DNA , Sequenciamento por Nanoporos/métodos , Bromodesoxiuridina , Genoma Fúngico , Saccharomyces cerevisiae , Iniciação da Transcrição Genética , Terminação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa