Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38684868

RESUMO

Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.

2.
Cell ; 181(3): 702-715.e20, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32315619

RESUMO

Protein phosphatase 2A (PP2A) enzymes can suppress tumors, but they are often inactivated in human cancers overexpressing inhibitory proteins. Here, we identify a class of small-molecule iHAPs (improved heterocyclic activators of PP2A) that kill leukemia cells by allosterically assembling a specific heterotrimeric PP2A holoenzyme consisting of PPP2R1A (scaffold), PPP2R5E (B56ε, regulatory), and PPP2CA (catalytic) subunits. One compound, iHAP1, activates this complex but does not inhibit dopamine receptor D2, a mediator of neurologic toxicity induced by perphenazine and related neuroleptics. The PP2A complex activated by iHAP1 dephosphorylates the MYBL2 transcription factor on Ser241, causing irreversible arrest of leukemia and other cancer cells in prometaphase. In contrast, SMAPs, a separate class of compounds, activate PP2A holoenzymes containing a different regulatory subunit, do not dephosphorylate MYBL2, and arrest tumor cells in G1 phase. Our findings demonstrate that small molecules can serve as allosteric switches to activate distinct PP2A complexes with unique substrates.


Assuntos
Proteína Fosfatase 2/metabolismo , Apoptose , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ativadores de Enzimas/metabolismo , Fase G1 , Humanos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Fenotiazinas/farmacologia , Fosforilação , Proteína Fosfatase 2/fisiologia , Subunidades Proteicas/metabolismo , Transativadores/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell ; 174(2): 300-311.e11, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007416

RESUMO

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Assuntos
DNA/metabolismo , Vigilância Imunológica/fisiologia , Nucleotidiltransferases/metabolismo , Animais , Benzofuranos/química , Benzofuranos/metabolismo , Sítios de Ligação , Domínio Catalítico , Quimiotaxia/efeitos dos fármacos , DNA/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade da Espécie , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiologia
5.
Nature ; 613(7943): 391-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599985

RESUMO

Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show,  through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.


Assuntos
Proteínas de Ligação ao GTP , Metiltransferases , Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , Biocatálise , Domínio Catalítico , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/metabolismo , Fosforilação , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato
6.
Nature ; 615(7954): 913-919, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922589

RESUMO

Chromatin-binding proteins are critical regulators of cell state in haematopoiesis1,2. Acute leukaemias driven by rearrangement of the mixed lineage leukaemia 1 gene (KMT2Ar) or mutation of the nucleophosmin gene (NPM1) require the chromatin adapter protein menin, encoded by the MEN1 gene, to sustain aberrant leukaemogenic gene expression programs3-5. In a phase 1 first-in-human clinical trial, the menin inhibitor revumenib, which is designed to disrupt the menin-MLL1 interaction, induced clinical responses in patients with leukaemia with KMT2Ar or mutated NPM1 (ref. 6). Here we identified somatic mutations in MEN1 at the revumenib-menin interface in patients with acquired resistance to menin inhibition. Consistent with the genetic data in patients, inhibitor-menin interface mutations represent a conserved mechanism of therapeutic resistance in xenograft models and in an unbiased base-editor screen. These mutants attenuate drug-target binding by generating structural perturbations that impact small-molecule binding but not the interaction with the natural ligand MLL1, and prevent inhibitor-induced eviction of menin and MLL1 from chromatin. To our knowledge, this study is the first to demonstrate that a chromatin-targeting therapeutic drug exerts sufficient selection pressure in patients to drive the evolution of escape mutants that lead to sustained chromatin occupancy, suggesting a common mechanism of therapeutic resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia , Mutação , Proteínas Proto-Oncogênicas , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Cromatina/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
7.
Blood ; 143(15): 1513-1527, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38096371

RESUMO

ABSTRACT: Small molecules that target the menin-KMT2A protein-protein interaction (menin inhibitors) have recently entered clinical trials in lysine methyltransferase 2A (KMT2A or MLL1)-rearranged (KMT2A-r) and nucleophosmin-mutant (NPM1c) acute myeloid leukemia (AML) and are demonstrating encouraging results. However, rationally chosen combination therapy is needed to improve responses and prevent resistance. We have previously identified IKZF1/IKAROS as a target in KMT2A-r AML and shown in preclinical models that IKAROS protein degradation with lenalidomide or iberdomide has modest single-agent activity yet can synergize with menin inhibitors. Recently, the novel IKAROS degrader mezigdomide was developed with greatly enhanced IKAROS protein degradation. In this study, we show that mezigdomide has increased preclinical activity in vitro as a single-agent in KMT2A-r and NPM1c AML cell lines, including sensitivity in cell lines resistant to lenalidomide and iberdomide. Further, we demonstrate that mezigdomide has the greatest capacity to synergize with and induce apoptosis in combination with menin inhibitors, including in MEN1 mutant models. We show that the superior activity of mezigdomide compared with lenalidomide or iberdomide is due to its increased depth, rate, and duration of IKAROS protein degradation. Single-agent mezigdomide was efficacious in 5 patient-derived xenograft models of KMT2A-r and 1 NPM1c AML. The combination of mezigdomide with the menin inhibitor VTP-50469 increased survival and prevented and overcame MEN1 mutations that mediate resistance in patients receiving menin inhibitor monotherapy. These results support prioritization of mezigdomide for early phase clinical trials in KMT2A-r and NPM1c AML, either as a single agent or in combination with menin inhibitors.


Assuntos
Leucemia Mieloide Aguda , Morfolinas , Proteína de Leucina Linfoide-Mieloide , Ftalimidas , Piperidonas , Humanos , Lenalidomida/uso terapêutico , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição/genética , Mutação
8.
Nature ; 588(7836): 164-168, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208943

RESUMO

Effective and sustained inhibition of non-enzymatic oncogenic driver proteins is a major pharmacological challenge. The clinical success of thalidomide analogues demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets1-3, but a substantial subset of proteins are resistant to targeted degradation using existing approaches4,5. Here we report an alternative mechanism of targeted protein degradation, in which a small molecule induces the highly specific, reversible polymerization of a target protein, followed by its sequestration into cellular foci and subsequent degradation. BI-3802 is a small molecule that binds to the Broad-complex, Tramtrack and Bric-à-brac (BTB) domain of the oncogenic transcription factor B cell lymphoma 6 (BCL6) and leads to the proteasomal degradation of BCL66. We use cryo-electron microscopy to reveal how the solvent-exposed moiety of a BCL6-binding molecule contributes to a composite ligand-protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule such as BI-3802 can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to increased pharmacological activity compared to the effects induced by other BCL6 inhibitors. These findings open new avenues for the development of therapeutic agents and synthetic biology.


Assuntos
Polimerização/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-6/química , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Microscopia Crioeletrônica , Humanos , Técnicas In Vitro , Ligantes , Modelos Moleculares , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/ultraestrutura , Solventes , Biologia Sintética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
9.
J Biol Chem ; 300(5): 107268, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582449

RESUMO

Dysregulation of phosphorylation-dependent signaling is a hallmark of tumorigenesis. Protein phosphatase 2 (PP2A) is an essential regulator of cell growth. One scaffold subunit (A) binds to a catalytic subunit (C) to form a core AC heterodimer, which together with one of many regulatory (B) subunits forms the active trimeric enzyme. The combinatorial number of distinct PP2A complexes is large, which results in diverse substrate specificity and subcellular localization. The detailed mechanism of PP2A assembly and regulation remains elusive and reports about an important role of methylation of the carboxy terminus of PP2A C are conflicting. A better understanding of the molecular underpinnings of PP2A assembly and regulation is critical to dissecting PP2A function in physiology and disease. Here, we combined biochemical reconstitution, mass spectrometry, X-ray crystallography, and functional assays to characterize the assembly of trimeric PP2A. In vitro studies demonstrated that methylation of the carboxy-terminus of PP2A C was dispensable for PP2A assembly in vitro. To corroborate these findings, we determined the X-ray crystal structure of the unmethylated PP2A Aα-B56ε-Cα trimer complex to 3.1 Å resolution. The experimental structure superimposed well with an Alphafold2Multimer prediction of the PP2A trimer. We then predicted models of all canonical PP2A complexes providing a framework for structural analysis of PP2A. In conclusion, methylation was dispensable for trimeric PP2A assembly and integrative structural biology studies of PP2A offered predictive models for all canonical PP2A complexes.


Assuntos
Proteína Fosfatase 2 , Humanos , Domínio Catalítico , Cristalografia por Raios X , Metilação , Multimerização Proteica , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/química
10.
Blood ; 139(13): 2024-2037, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34936696

RESUMO

Immunomodulatory (IMiD) agents like lenalidomide and pomalidomide induce the recruitment of IKZF1 and other targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and degradation. These agents are highly active in B-cell lymphomas and a subset of myeloid diseases but have compromised effects in T-cell lymphomas (TCLs). Here, we show that 2 factors determine resistance to IMiDs among TCLs. First, limited CRBN expression reduces IMiD activity in TCLs but can be overcome by newer-generation degrader CC-92480. Using mass spectrometry, we show that CC-92480 selectively degrades IKZF1 and ZFP91 in TCL cells with greater potency than pomalidomide. As a result, CC-92480 is highly active against multiple TCL subtypes and showed greater efficacy than pomalidomide across 4 in vivo TCL models. Second, we demonstrate that ZFP91 functions as a bona fide transcription factor that coregulates cell survival with IKZF1 in IMiD-resistant TCLs. By activating keynote genes from WNT, NF-kB, and MAP kinase signaling, ZFP91 directly promotes resistance to IKZF1 loss. Moreover, lenalidomide-sensitive TCLs can acquire stable resistance via ZFP91 rewiring, which involves casein kinase 2-mediated c-Jun inactivation. Overall, these findings identify a critical transcription factor network within TCLs and provide clinical proof of concept for the novel therapy using next-generation degraders.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Fatores Imunológicos/farmacologia , Linfoma de Células T , Mieloma Múltiplo , Ubiquitina-Proteína Ligases , Humanos , Fator de Transcrição Ikaros/metabolismo , Lenalidomida/farmacologia , Linfoma de Células T/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
J Am Chem Soc ; 145(2): 1176-1184, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36602777

RESUMO

Targeted protein degradation (TPD) is a new pharmacology based on small-molecule degraders that induce proximity between a protein of interest (POI) and an E3 ubiquitin ligase. Of the approximately 600 E3s encoded in the human genome, only around 2% can be co-opted with degraders. This underrepresentation is caused by a paucity of discovery approaches to identify degraders for defined E3s. This hampers a rational expansion of the druggable proteome and stymies critical advancements in the field, such as tissue- and cell-specific degradation. Here, we focus on dynamic NEDD8 conjugation, a post-translational, regulatory circuit that controls the activity of 250 cullin RING E3 ligases (CRLs). Leveraging this regulatory layer enabled us to develop a scalable assay to identify compounds that alter the interactome of an E3 of interest by tracing their abundance after pharmacologically induced auto-degradation. Initial validation studies are performed for CRBN and VHL, but proteomics studies indicate broad applicability for many CRLs. Among amenable ligases, we select CRLDCAF15 for a proof-of-concept screen, leading to the identification of a novel DCAF15-dependent molecular glue degrader inducing the degradation of RBM23 and RBM39. Together, this strategy empowers the scalable identification of degraders specific to a ligase of interest.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Humanos , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise
12.
J Med Virol ; 95(1): e28157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117402

RESUMO

Coronavirus disease 2019 (COVID-19) remains a major public health concern, and vaccine unavailability, hesitancy, or failure underscore the need for discovery of efficacious antiviral drug therapies. Numerous approved drugs target protein kinases associated with viral life cycle and symptoms of infection. Repurposing of kinase inhibitors is appealing as they have been vetted for safety and are more accessible for COVID-19 treatment. However, an understanding of drug mechanism is needed to improve our understanding of the factors involved in pathogenesis. We tested the in vitro activity of three kinase inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including inhibitors of AXL kinase, a host cell factor that contributes to successful SARS-CoV-2 infection. Using multiple cell-based assays and approaches, gilteritinib, nintedanib, and imatinib were thoroughly evaluated for activity against SARS-CoV-2 variants. Each drug exhibited antiviral activity, but with stark differences in potency, suggesting differences in host dependency for kinase targets. Importantly, for gilteritinib, the amount of compound needed to achieve 90% infection inhibition, at least in part involving blockade of spike protein-mediated viral entry and at concentrations not inducing phospholipidosis (PLD), approached a clinically achievable concentration. Knockout of AXL, a target of gilteritinib and nintedanib, impaired SARS-CoV-2 variant infectivity, supporting a role for AXL in SARS-CoV-2 infection and supporting further investigation of drug-mediated AXL inhibition as a COVID-19 treatment. This study supports further evaluation of AXL-targeting kinase inhibitors as potential antiviral agents and treatments for COVID-19. Additional mechanistic studies are needed to determine underlying differences in virus response.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Antivirais/farmacologia , Antivirais/uso terapêutico , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Nat Chem Biol ; 17(6): 711-717, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34035522

RESUMO

The zinc-finger transcription factor Helios is critical for maintaining the identity, anergic phenotype and suppressive activity of regulatory T (Treg) cells. While it is an attractive target to enhance the efficacy of currently approved immunotherapies, no existing approaches can directly modulate Helios activity or abundance. Here, we report the structure-guided development of small molecules that recruit the E3 ubiquitin ligase substrate receptor cereblon to Helios, thereby promoting its degradation. Pharmacological Helios degradation destabilized the anergic phenotype and reduced the suppressive activity of Treg cells, establishing a route towards Helios-targeting therapeutics. More generally, this study provides a framework for the development of small-molecule degraders for previously unligandable targets by reprogramming E3 ligase substrate specificity.


Assuntos
Proteínas de Ligação a DNA/efeitos dos fármacos , Fator de Transcrição Ikaros/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Fator de Transcrição Ikaros/genética , Células Jurkat , Camundongos , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Angew Chem Int Ed Engl ; 62(18): e202302364, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898968

RESUMO

Phosphatidylinositol 5-phosphate 4-kinase, type II, gamma (PIP4K2C) remains a poorly understood lipid kinase with minimal enzymatic activity but potential scaffolding roles in immune modulation and autophagy-dependent catabolism. Achieving potent and selective agents for PIP4K2C while sparing other lipid and non-lipid kinases has been challenging. Here, we report the discovery of the highly potent PIP4K2C binder TMX-4102, which shows exclusive binding selectivity for PIP4K2C. Furthermore, we elaborated the PIP4K2C binder into TMX-4153, a bivalent degrader capable of rapidly and selectively degrading endogenous PIP4K2C. Collectively, our work demonstrates that PIP4K2C is a tractable and degradable target, and that TMX-4102 and TMX-4153 are useful leads to further interrogate the biological roles and therapeutic potential of PIP4K2C.


Assuntos
Autofagia
15.
Nat Chem Biol ; 16(1): 7-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686031

RESUMO

The investigational drugs E7820, indisulam and tasisulam (aryl-sulfonamides) promote the degradation of the splicing factor RBM39 in a proteasome-dependent mechanism. While the activity critically depends on the cullin RING ligase substrate receptor DCAF15, the molecular details remain elusive. Here we present the cryo-EM structure of the DDB1-DCAF15-DDA1 core ligase complex bound to RBM39 and E7820 at a resolution of 4.4 Å, together with crystal structures of engineered subcomplexes. We show that DCAF15 adopts a new fold stabilized by DDA1, and that extensive protein-protein contacts between the ligase and substrate mitigate low affinity interactions between aryl-sulfonamides and DCAF15. Our data demonstrate how aryl-sulfonamides neo-functionalize a shallow, non-conserved pocket on DCAF15 to selectively bind and degrade RBM39 and the closely related splicing factor RBM23 without the requirement for a high-affinity ligand, which has broad implications for the de novo discovery of molecular glue degraders.


Assuntos
Indóis/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteólise/efeitos dos fármacos , Proteínas com Motivo de Reconhecimento de RNA/química , Sulfonamidas/química , Motivos de Aminoácidos , Animais , Benzamidas/química , Benzamidas/farmacologia , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Humanos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA , Spodoptera , Sulfonamidas/farmacologia , Ubiquitina-Proteína Ligases/química , Xenopus
16.
Blood ; 133(9): 952-961, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30545835

RESUMO

The covalent Bruton tyrosine kinase (BTK) inhibitor ibrutinib is highly efficacious against multiple B-cell malignancies. However, it is not selective for BTK, and multiple mechanisms of resistance, including the C481S-BTK mutation, can compromise its efficacy. We hypothesized that small-molecule-induced BTK degradation may overcome some of the limitations of traditional enzymatic inhibitors. Here, we demonstrate that BTK degradation results in potent suppression of signaling and proliferation in cancer cells and that BTK degraders efficiently degrade C481S-BTK. Moreover, we discovered DD-03-171, an optimized lead compound that exhibits enhanced antiproliferative effects on mantle cell lymphoma (MCL) cells in vitro by degrading BTK, IKFZ1, and IKFZ3 as well as efficacy against patient-derived xenografts in vivo. Thus, "triple degradation" may be an effective therapeutic approach for treating MCL and overcoming ibrutinib resistance, thereby addressing a major unmet need in the treatment of MCL and other B-cell lymphomas.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linfoma de Célula do Manto/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Adenina/análogos & derivados , Animais , Humanos , Fator de Transcrição Ikaros/metabolismo , Linfoma de Célula do Manto/enzimologia , Linfoma de Célula do Manto/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas , Proteólise , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Angew Chem Int Ed Engl ; 60(25): 13783-13787, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33768661

RESUMO

Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.


Assuntos
Eucariotos/química , Ressonância Magnética Nuclear Biomolecular , Receptores Acoplados a Proteínas G/química , Humanos , Estrutura Molecular
18.
Nat Chem Biol ; 14(7): 706-714, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892083

RESUMO

Heterobifunctional small-molecule degraders that induce protein degradation through ligase-mediated ubiquitination have shown considerable promise as a new pharmacological modality. However, we currently lack a detailed understanding of the molecular basis for target recruitment and selectivity, which is critically required to enable rational design of degraders. Here we utilize a comprehensive characterization of the ligand-dependent CRBN-BRD4 interaction to demonstrate that binding between proteins that have not evolved to interact is plastic. Multiple X-ray crystal structures show that plasticity results in several distinct low-energy binding conformations that are selectively bound by ligands. We demonstrate that computational protein-protein docking can reveal the underlying interprotein contacts and inform the design of a BRD4 selective degrader that can discriminate between highly homologous BET bromodomains. Our findings that plastic interprotein contacts confer selectivity for ligand-induced protein dimerization provide a conceptual framework for the development of heterobifunctional ligands.


Assuntos
Acetamidas/farmacologia , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Talidomida/farmacologia , Tiofenos/farmacologia , Fatores de Transcrição/metabolismo , Acetamidas/química , Proteínas Adaptadoras de Transdução de Sinal , Sítios de Ligação/efeitos dos fármacos , Proteínas de Ciclo Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Proteínas Nucleares/química , Peptídeo Hidrolases/química , Talidomida/química , Tiofenos/química , Fatores de Transcrição/química , Ubiquitina-Proteína Ligases
19.
Pediatr Cardiol ; 41(3): 632-641, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006082

RESUMO

One of the roles of a pediatric cardiologist who suspects or diagnoses a genetically determined connective tissue disease (e.g., Marfan, Ehlers-Danlos, and Loeys-Dietz syndromes) is to assess whether the aortic root is dilated. The aortic root diameter is affected by the patient's age, sex, and body surface area. Therefore, the aortic root diameter needs to be determined and expressed as a z-score. Calculation of the z-score is time-consuming and problematic if used infrequently. This study aimed to introduce a simple screening method for identifying aortic root dilation in children. The study population consisted of 190 children who were diagnosed with Marfan syndrome or Marfan-like disorders. The aortic root ratio (ARr) was formulated. The value of the ARr was compared in each patient with the results in z-scores, which were obtained using on-line calculators based on the most widespread nomograms. The optimal cut-off value of the ARr was ≥ 18.7. At this cut-off point, the sensitivity of the ARr ranged from 88.3% to 100% and the specificity ranged from 94% to 97.8%. All of the patients in whom the ARr failed to identify aortic root dilation were also divergently classified by different nomograms. At the ARr cut-off point of ≥ 18.0, a sensitivity of 100% was achieved for all nomograms with minimal reduction in specificity. The ARr allows for rapid and precise screening for aortic root dilation in children. Unlike classic analysis, the ARr does not require nomograms or on-line calculations.


Assuntos
Aorta/diagnóstico por imagem , Dilatação Patológica/diagnóstico por imagem , Síndrome de Marfan/diagnóstico por imagem , Adolescente , Aorta/patologia , Criança , Pré-Escolar , Dilatação , Feminino , Humanos , Masculino , Síndrome de Marfan/complicações , Nomogramas , Estudos Retrospectivos , Sensibilidade e Especificidade
20.
Angew Chem Int Ed Engl ; 59(34): 14481-14489, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32510788

RESUMO

Targeting epidermal growth factor receptor (EGFR) through an allosteric mechanism provides a potential therapeutic strategy to overcome drug-resistant EGFR mutations that emerge within the ATP binding site. Here, we develop an allosteric EGFR degrader, DDC-01-163, which can selectively inhibit the proliferation of L858R/T790M (L/T) mutant Ba/F3 cells while leaving wildtype EGFR Ba/F3 cells unaffected. DDC-01-163 is also effective against osimertinib-resistant cells with L/T/C797S and L/T/L718Q EGFR mutations. When combined with an ATP-site EGFR inhibitor, osimertinib, the anti-proliferative activity of DDC-01-163 against L858R/T790M EGFR-Ba/F3 cells is enhanced. Collectively, DDC-01-163 is a promising allosteric EGFR degrader with selective activity against various clinically relevant EGFR mutants as a single agent and when combined with an ATP-site inhibitor. Our data suggests that targeted protein degradation is a promising drug development approach for mutant EGFR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Regulação Alostérica , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa