Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 54(9): 2313-2322, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33847478

RESUMO

Life emerges from complicated and sophisticated chemical networks comprising numerous biomolecules (e.g., nucleic acids, proteins, sugars, and lipids) and chemical reactions catalyzed by enzymes. Dysregulation of these chemical networks is linked to the emergence of diseases. Our research goal is to develop abiotic chemical catalysts that can intervene into life's chemical networks by complementing, surrogating, or exceeding enzymes in living cells or multicellular organisms such as animals or plants. Mending dysregulated networks in pathological states by the chemical catalysts will lead to a new medicinal strategy, catalysis medicine. This research direction will also advance catalysis science, because highly active and selective chemical catalysts must be developed to promote the intended reactions in a complex mixture of life in aqueous solution at body temperature.Epigenetics exists at the crossroads of chemistry, biology, and medicine and is a suitable field to pursue this idea. Post-translational modifications (PTMs) of histones epigenetically regulate chromatin functions and gene transcription and are intimately related to various diseases. Investigating the functions and cross-talk of histone PTMs is crucial for mechanistic elucidation of diseases and their treatments. We launched a program to develop chemical catalysts enabling endogenous histone modifications in living cells without relying on enzymes. We reported two types of chemical catalyst systems so far for synthetic histone acylation. The first system comprised a DNA-binding oligo-4-dimethylaminopyridine (DMAP) catalyst and a phenyl ester acyl donor, PAc-gly. This system promoted histone hyperacetylation in Xenopus laevis sperm chromatin. Using the thus-synthesized hyperacetylated sperm chromatin, we found a novel relationship between histone acetylation and DNA replication. The second system involved a histone-binding catalyst, LANA-DSH, composed of a catalytic motif (DSH) and a histone-binding peptide ligand (LANA), and thioester acyl donors, including endogenous acyl-CoA. This system regioselectively (i.e., selectively to a lysine residue at a specific position) acylated lysine 120 of histone H2B (H2BK120), a lysine residue proximal to the DSH motif defined by binding of the LANA ligand to a nucleosome substrate. This catalyst system was optimized to achieve H2BK120-selective acetylation in living cells without genetic manipulation. The synthetically introduced H2BK120Ac inhibited enzyme-catalyzed ubiquitination at the same lysine residue, acting as a protecting group. H2BK120Ub is a mark recognized by methyltransferase that plays an essential role in mixed-lineage leukemia (MLL)-rearranged leukemia, suggesting the potential of the catalyst system as an epigenetic tool and a cancer therapy. We also discuss the prospects of chemical catalyst-promoted synthetic epigenetics for future PTM studies and therapeutic uses.


Assuntos
4-Aminopiridina/análogos & derivados , DNA/química , Ésteres/química , Histonas/química , Peptídeos/química , Compostos de Sulfidrila/química , 4-Aminopiridina/química , Animais , Catálise , Epigênese Genética/genética , Histonas/genética , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
2.
ACS Cent Sci ; 9(11): 2115-2128, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033808

RESUMO

Peptides are privileged ligands for diverse biomacromolecules, including proteins; however, their utility is often limited due to low membrane permeability and in-cell instability. Here, we report peptide ligand-inserted eDHFR (PLIED) fusion protein as a universal adaptor for targeting proteins of interest (POI) with cell-permeable and stable synthetic functional small molecules (SFSM). PLIED binds to POI through the peptide moiety, properly orienting its eDHFR moiety, which then recruits trimethoprim (TMP)-conjugated SFSM to POI. Using a lysine-acylating BAHA catalyst as SFSM, we demonstrate that POI (MDM2 and chromatin histone) are post-translationally and synthetically acetylated at specific lysine residues. The residue-selectivity is predictable in an atomic resolution from molecular dynamics simulations of the POI/PLIED/TMP-BAHA (MTX was used as a TMP model) ternary complex. This designer adaptor approach universally enables functional conversion of impermeable peptide ligands to permeable small-molecule ligands, thus expanding the in-cell toolbox of chemical biology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa