Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(17): e37146, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319117

RESUMO

The objective of this study was to examine the integration of a wild leafy vegetable, Cichorium spinosum L., in vertical farms. This research comprises two experiments focusing on different "white" light products and nutrient solutions. During both experiments, the temperature varied between 25 and 28 °C, relative humidity ranged from 50 to 70 %, carbon dioxide was at 450 ppm, and light intensity was set at 300 µmol m-2 s-1 respectively. In the lighting experiment, the three spectra used had the commercial names Neutral, Full and a SunLike™, and their spectral composition (blue:green:red:far-red) were 14:32:43:10, 16:36:40:8, and 21:34:36:7 respectively. The photoperiod was set to 12 h and the plant density was 50 plants m-2. Results showed no significant impact on agronomical parameters and leaf anatomy. The stomatal length and width decreased as the red:blue ratio of the light sources decreased, being greater in the Neutral treatment (red:blue ratio of 3.1) compared to the Full and SunLike™ (red:blue ratios of 2.5 and 1.7 respectively). Based on these results the preferable "white light" product was the one with the highest efficiency and lowest market price at the time of the experiment. In the nutrient solution experiment, the agronomical and nutritional attributes of stamnagathi plants supplied with a control nutrient solution, "N10-Fe15" were compared to plants cultivated under limited nitrogen, "N4-Fe15" and elevated iron, "N10-Fe48", EC was 1.5 ds m-1, and pH was 5.6-6.5. The experiment simulated commercial practices by increasing the photoperiod to 15 h and plant density to 100 plants per square meter. The results did not demonstrate significant effect of the nutrient solution differences on the agronomical characteristics except from a decrease in total Kjeldahl nitrogen under limited nitrogen conditions. Notably, leaf tissue phosphorus content increased under elevated iron conditions. The nitrate content remained within safe for consumption thresholds for all treatments. Based on these results, stamnagathi can be integrated in vertical farms under limited nitrogen conditions. Stamnagathi's resilience to elevated iron in the nutrient solution demonstrated its potential for future biofortification experiments.

2.
Plants (Basel) ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794474

RESUMO

Salinity, one of the major abiotic stresses in plants, significantly hampers germination, photosynthesis, biomass production, nutrient balance, and yield of staple crops. To mitigate the impact of such stress without compromising yield and quality, sustainable agronomic practices are required. Among these practices, seaweed extracts (SWEs) and microbial biostimulants (PGRBs) have emerged as important categories of plant biostimulants (PBs). This research aimed at elucidating the effects on growth, yield, quality, and nutrient status of two Greek tomato landraces ('Tomataki' and 'Thessaloniki') following treatments with the Ascophyllum nodosum seaweed extract 'Algastar' and the PGPB 'Nitrostim' formulation. Plants were subjected to bi-weekly applications of biostimulants and supplied with two nutrient solutions: 0.5 mM (control) and 30 mM NaCl. The results revealed that the different mode(s) of action of the two PBs impacted the tolerance of the different landraces, since 'Tomataki' was benefited only from the SWE application while 'Thessaloniki' showed significant increase in fruit numbers and average fruit weight with the application of both PBs at 0.5 and 30 mM NaCl in the root zone. In conclusion, the stress induced by salinity can be mitigated by increasing tomato tolerance through the application of PBs, a sustainable tool for productivity enhancement, which aligns well with the strategy of the European Green Deal.

3.
Heliyon ; 10(15): e35508, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170546

RESUMO

Common sowthistle (Sonchus oleraceus L.) and bristly oxtongue [Helminthotheca echioides (L.) Holub] are winter broad-leaved weeds that have gained interest for cultivation as leafy vegetables. The aim of this study was to examine the effects of frass from the yellow mealworm (Tenebrio molitor L.) on nutrient content in soil, growth parameters, and nutrient content in above-ground plant tissues of common sowthistle and bristly oxtongue. Thus, two pot experiments were carried out with 5 treatments [control, calcium ammonium nitrate (CAN) applied at a dose of 100 kg N ha-1, and insect frass applied at a rate of 3500 kg ha-1 (0.5 % w/w) 7000 kg ha-1 (1 % w/w), and 14,000 kg ha-1 (2 % w/w)]. Our results showed that the lowest values of growth parameters for both plant species were recorded in the control treatment. At the final rosette growth stage [e.g., 152 days after sowing (DAS)], the CAN treatment exhibited the highest values of rosette diameter and above-ground dry weight, followed by the highest rate of insect frass. Similarly, at 152 DAS the SPAD index values in the CAN treatment were 28.4-41.5 % higher compared to the control treatment in both species. Regarding root dry weight, the highest values were found in the CAN and insect frass 2 % treatments. In addition, the application of insect frass significantly enhanced soil fertility, with the highest levels of P and K recorded in the insect frass 2 % treatment. In contrast, the CAN treatment resulted in the highest NO3-N content in the soil (15.83 and 19.26 mg kg-1 in common sowthistle and bristly oxtongue, respectively). Moreover, both P and K content in the above-ground plant tissues had the highest values in the insect frass 2 % treatment, while the content of Mg, Mn, and Cu in plant tissues was not affected by the fertilization sources. Therefore, our findings indicate that insect frass can be an additional option in crop fertilization programs as it can improve both the soil fertility and growth of crops compared to conventional inorganic fertilizer sources. However, the effects of insect frass in mixtures with inorganic fertilizers needs to be taken into consideration in future studies.

4.
Plants (Basel) ; 12(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896015

RESUMO

Salinity is a major stress factor that compromises vegetable production in semi-arid climates such as the Mediterranean. The accumulation of salts in the soil can be attributed to limited water availability, which can be exacerbated by changes in rainfall patterns and rising temperatures. These factors can alter soil moisture levels and evaporation rates, ultimately leading to an increase in soil salinity, and, concomitantly, the extent to which crop yield is affected by salinity stress is considered cultivar-dependent. In contrast to tomato hybrids, tomato landraces often exhibit greater genetic diversity and resilience to environmental stresses, constituting valuable resources for breeding programs seeking to introduce new tolerance mechanisms. Therefore, in the present study, we investigated the effects of mild salinity stress on the growth, yield, and nutritional status of sixteen Mediterranean tomato landraces of all size types that had been pre-selected as salinity tolerant in previous screening trials. The experiment was carried out in the greenhouse facilities of the Laboratory of Vegetable Production at the Agricultural University of Athens. To induce salinity stress, plants were grown hydroponically and irrigated with a nutrient solution containing NaCl at a concentration that could maintain the NaCl level in the root zone at 30 mM, while the non-salt-treated plants were irrigated with a nutrient solution containing 0.5 mM NaCl. Various plant growth parameters, including dry matter content and fruit yield (measured by the number and weight of fruits per plant), were evaluated to assess the impact of salinity stress. In addition, the nutritional status of the plants was assessed by determining the concentrations of macro- and micronutrients in the leaves, roots, and fruit of the plants. The key results of this study reveal that cherry-type tomato landraces exhibit the highest tolerance to salinity stress, as the landraces 'Cherry-INRAE (1)', 'Cherry-INRAE (3)', and 'Cherry-INRAE (4)' did not experience a decrease in yield when exposed to salinity stress. However, larger landraces such as 'de Ramellet' also exhibit mechanisms conferring tolerance to salinity, as their yield was not compromised by the stress applied. The identified tolerant and resistant varieties could potentially be used in breeding programs to develop new varieties and hybrids that are better adapted to salinity-affected environments. The identification and utilization of tomato varieties that are adapted to salinity stress is an important strategy for promoting agriculture sustainability, particularly in semi-arid regions where salinity stress is a major challenge.

5.
Plants (Basel) ; 12(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050080

RESUMO

Corn salad (Valerianella locusta) is a popular winter salad, cultivated as an ingredient for ready-to-eat salads. The application of mild salinity stress (eustress) can increase the flavor and reduce the nitrate content of certain crops but, at the same time, a wrong choice of the eustress type and dose can negatively affect the overall productivity. In this research, the effects of different isosmotic salt solutions, corresponding to two different electrical conductivity (EC) levels, were investigated on the yield and mineral composition of hydroponically grown Valerianella locusta "Elixir". Five nutrient solutions (NS) were compared, including a basic NS used as the control, and four saline NS were obtained by adding to the basic NS either NaCl or CaCl2 at two rates each, corresponding to two isosmotic salt levels at a low and high EC level. Corn salad proved moderately susceptible to long-term salinity stress, suffering growth losses at both low and high EC levels of saline solution, except from the low NaCl treatment. Hence, it appears that mild salinity stress induced by NaCl could be employed as an eustress solution and corn salad could be cultivated with low-quality irrigation water (20 mM NaCl) in hydroponic systems.

6.
Plants (Basel) ; 12(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771728

RESUMO

This study aims to explore the possibility of a reduced application of inorganic nitrogen (N) fertiliser on the yield, yield qualities, and biological nitrogen fixation (BNF) of the hydroponic common bean (Phaseolus vulgaris L.), without compromising plant performance, by utilizing the inherent ability of this plant to symbiotically fix N2. Until the flowering stage, plants were supplied with a nutrient solution containing N-concentrations of either a, 100%, conventional standard-practice, 13.8 mM; b, 75% of the standard, 10.35 mM; or c, 50% of the standard, 6.9 mM. During the subsequent reproductive stage, inorganic-N treatments b and c were decreased to 25% of the standard, and the standard (100% level) N-application was not altered. The three different inorganic-N supply treatments were combined with two different rhizobia strains, and a control (no-inoculation) treatment, in a two-factorial experiment. The rhizobia strains applied were either the indigenous strain Rhizobium sophoriradicis PVTN21 or the commercially supplied Rhizobium tropici CIAT 899. Results showed that the 50-25% mineral-N application regime led to significant increases in nodulation, BNF, and fresh-pod yield, compared to the other treatment, with a reduced inorganic-N supply. On the other hand, the 75-25% mineral-N regime applied during the vegetative stage restricted nodulation and BNF, thus incurring significant yield losses. Both rhizobia strains stimulated nodulation and BNF. However, the BNF capacity they facilitated was suppressed as the inorganic-N input increased. In addition, strain PVTN21 was superior to CIAT 899-as 50-25% N-treated plants inoculated with the former showed a yield loss of 11%, compared to the 100%-N-treated plants. In conclusion, N-use efficiency optimises BNF, reduces mineral-N-input dependency, and therefore may reduce any consequential negative environmental consequences of mineral-N over-application.

7.
Plants (Basel) ; 12(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375919

RESUMO

To address the complex challenges faced by our planet such as rapidly changing climate patterns, food and nutritional insecurities, and the escalating world population, the development of hybrid vegetable crops is imperative. Vegetable hybrids could effectively mitigate the above-mentioned fundamental challenges in numerous countries. Utilizing genetic mechanisms to create hybrids not only reduces costs but also holds significant practical implications, particularly in streamlining hybrid seed production. These mechanisms encompass self-incompatibility (SI), male sterility, and gynoecism. The present comprehensive review is primarily focused on the elucidation of fundamental processes associated with floral characteristics, the genetic regulation of floral traits, pollen biology, and development. Specific attention is given to the mechanisms for masculinizing and feminizing cucurbits to facilitate hybrid seed production as well as the hybridization approaches used in the biofortification of vegetable crops. Furthermore, this review provides valuable insights into recent biotechnological advancements and their future utilization for developing the genetic systems of major vegetable crops.

8.
Plants (Basel) ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616159

RESUMO

The aim of the current study wat to comparatively assess the impact of different nitrogen (N) fertilization schemes on fresh pod yield and yield quality in either organically or conventionally grown common beans (Phaseolus vulgaris L.). Prior to common bean crop establishment, the experimental field site was cultivated following either organic (a) or conventional (b) farming practices with a winter non-legume crop (Brassica oleracea var. italica) (BR), or (c) with field bean (Vicia faba sp.) destined to serve as a green manure (GM) crop. At the end of the winter cultivation period the broccoli crop residues (BR) and green manure biomass (GM) were incorporated into the soil and the plots that accommodated the treatments (a) and (c) were followed by an organically cultivated common bean crop, while the conventional broccoli crop was followed by a conventionally cropped common bean crop. Additional to the plant residues (BR), sheep manure (SM) at a rate of 40 kg N ha-1 was also applied to the organically treated common beans, while the plots with a conventionally cropped common bean received 75 kg N ha-1. Organic common bean treated with SM + BR produced smaller pods of higher dry matter and bioactive compound content, responses that are correlated with limited soil N availability. No significant variations were observed on yield components and N levels of pods cultivated under organic (SM + GM) and conventional cropping systems. Pod sugar and starch content was not influenced by the different fertilization practices. In conclusion, we have demonstrated that the combined application of SM + GM can be considered as an efficient N-fertilisation strategy for organic crops of common bean, benefiting their nutritional value without compromising yield.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa