Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202400815, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38408163

RESUMO

Photocatalytic reactions involving a reductive radical-polar crossover (RRPCO) generate intermediates with carbanionic reactivity. Many of these proposed intermediates resemble highly reactive organometallic compounds. However, conditions of their formation are generally not tolerated by their isolated organometallic versions and often a different reactivity is observed. Our investigations on their nature and reactivity under commonly used photocatalytic conditions demonstrate that these intermediates are indeed best described as free, superbasic carbanions capable of deprotonating common polar solvents usually assumed to be inert such as acetonitrile, dimethylformamide, and dimethylsulfoxide. Their basicity not only towards solvents but also towards electrophiles, such as aldehydes, ketones, and esters, is comparable to the reactivity of isolated carbanions in the gas-phase. Previously unsuccessful transformations thought to result from a lack of reactivity are explained by their high reactivity towards the solvent and weakly acidic protons of reaction partners. An intuitive explanation for the mode of action of photocatalytically generated carbanions is provided, which enables methods to verify reaction mechanisms proposed to involve an RRPCO step and to identify the reasons for the limitations of current methods.

2.
Angew Chem Int Ed Engl ; 63(28): e202405780, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38693673

RESUMO

Precious metal complexes remain ubiquitous in photoredox catalysis (PRC) despite concerted efforts to find more earth-abundant catalysts and replacements based on 3d metals in particular. Most otherwise plausible 3d metal complexes are assumed to be unsuitable due to short-lived excited states, which has led researchers to prioritize the pursuit of longer excited-state lifetimes through careful molecular design. However, we report herein that the C-H arylation of pyrroles and related substrates (which are benchmark reactions for assessing the efficacy of photoredox catalysts) can be achieved using a simple and readily accessible octahedral bis(diiminopyridine) cobalt complex, [1-Co](PF6)2. Notably, [1-Co]2+ efficiently functionalizes both chloro- and bromoarene substrates despite the short excited-state lifetime of the key photoexcited intermediate *[1-Co]2+ (8 ps). We present herein the scope of this C-H arylation protocol and provide mechanistic insights derived from detailed spectroscopic and computational studies. These indicate that, despite its transient existence, reduction of *[1-Co]2+ is facilitated via pre-assembly with the NEt3 reductant, highlighting an alternative strategy for the future development of 3d metal-catalyzed PRC.

3.
J Am Chem Soc ; 145(4): 2354-2363, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36660908

RESUMO

Upon irradiation in the presence of a chiral benzophenone catalyst (5 mol %), a racemic mixture of a given chiral imidazolidine-2,4-dione (hydantoin) can be converted almost quantitatively into the same compound with high enantiomeric excess (80-99% ee). The mechanism of this photochemical deracemization reaction was elucidated by a suite of mechanistic experiments. It was corroborated by nuclear magnetic resonance titration that the catalyst binds the two enantiomers by two-point hydrogen bonding. In one of the diastereomeric complexes, the hydrogen atom at the stereogenic carbon atom is ideally positioned for hydrogen atom transfer (HAT) to the photoexcited benzophenone. Detection of the protonated ketyl radical by transient absorption revealed hydrogen abstraction to occur from only one but not from the other hydantoin enantiomer. Quantum chemical calculations allowed us to visualize the HAT within this complex and, more importantly, showed that the back HAT does not occur to the carbon atom of the hydantoin radical but to its oxygen atom. The achiral enol formed in this process could be directly monitored by its characteristic transient absorption signal at λ ≅ 330 nm. Subsequent tautomerization leads to both hydantoin enantiomers, but only one of them returns to the catalytic cycle, thus leading to an enrichment of the other enantiomer. The data are fully consistent with deuterium labeling experiments and deliver a detailed picture of a synthetically useful photochemical deracemization reaction.

4.
Angew Chem Int Ed Engl ; 62(47): e202313606, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37793026

RESUMO

2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will. If other stereogenic centers are present in the diketopiperazines they remain unaffected and a stereochemical editing is possible at a single position. Consecutive reactions, including the conversion into N-aryl or N-alkyl amino acids or the reduction to piperazines, occur without compromising the newly created stereogenic center. Transient absorption spectroscopy revealed that the benzophenone catalyst processes one enantiomer of the 2,5-diketopiperazines preferentially and enables a reversible hydrogen atom transfer that is responsible for the deracemization process. The remarkably long lifetime of the protonated ketyl radical implies a yet unprecedented mode of action.

5.
Chemistry ; 28(57): e202201858, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35862259

RESUMO

Increasing the metal-to-ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo- and heteroleptic complexes [Fe(cpmp)2 ]2+ (12+ ) and [Fe(cpmp)(ddpd)]2+ (22+ ) with the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-di-pyridin-2-ylpyridine-2,6-diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal-ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six-membered chelate rings. The push-pull ligand cpmp provides intra-ligand and ligand-to-ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 12+ and 22+ were accessed by X-ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X-ray emission spectroscopy, static and time-resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.

6.
J Org Chem ; 87(3): 1745-1755, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34843237

RESUMO

Formazan molecules exhibit photochromism because isomerization processes following excitation may occur in both the azo group and the hydrazone group; thus, each formazan may be present in various forms with different colors. The ratio of these forms depends on the illumination conditions and the environment of the formazan with a most incisive sensibility of the thermal anti-syn relaxation of the C═N toward slight traces of impurities in toluene solutions, as reported most prominently for 1,3,5-triphenylformazan. Here, we study the latter compound with transient absorption spectroscopy to investigate the role of these traces by adding small amounts of both protic and aprotic cosolvents. Whereas the activation barrier decreases if the binary solvent mixture has a higher polarity, the role of hydrogen bonding can have a reverse impact on the thermal isomerization rate. Both the addition of an aprotic cosolvent and the addition of a protic cosolvent can slow the reaction due to their hydrogen-bond accepting and hydrogen-bond donating properties, respectively. In the case of methanol as a cosolvent, this effect outweighed that of the polarity increase for small concentrations, which was not observed for the fluorinated alcohol hexafluoroisopropanol. The results are explained in the context of a competition between solute-cosolvent and cosolvent-cosolvent hydrogen bonding.


Assuntos
Etanol , Tolueno , Formazans , Isomerismo , Cinética , Solventes/química
7.
Photochem Photobiol Sci ; 21(12): 2179-2192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36178669

RESUMO

The phenomenon of photoacidity, i.e., an increase in acidity by several orders of magnitude upon electronic excitation, is frequently encountered in aromatic alcohols capable of transferring a proton to a suitable acceptor. A promising new class of neutral super-photoacids based on pyranine derivatives has been shown to exhibit pronounced solvatochromic effects. To disclose the underlying mechanisms contributing to excited-state proton transfer (ESPT) and the temporal characteristics of solvation and ESPT, we scrutinize the associated ultrafast dynamics of the strongest photoacid of this class, namely tris(1,1,1,3,3,3-hexafluoropropan-2-yl)8-hydroxypyrene-1,3,6-trisulfonate, in acetoneous environment, thereby finding experimental evidence for ESPT even under these adverse conditions for proton transfer. Juxtaposing results from time-correlated single-photon counting and femtosecond transient absorption measurements combined with a complete decomposition of all signal components, i.e., absorption of ground and excited states as well as stimulated emission, we disclose dynamics of solvation, rotational diffusion, and radiative relaxation processes in acetone and identify the relevant steps of ESPT along with the associated time scales.


Assuntos
Prótons
8.
Phys Chem Chem Phys ; 24(48): 30017-30026, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472246

RESUMO

Salicylimines are versatile compounds in which an excited-state intramolecular proton transfer and torsional motions may set in upon photoexcitation. Here, we study N-(α-phenylethyl)salicylimine (PESA) to elucidate how the photochemical reaction pathways depend on the excitation wavelength and to what extent the relative photoproduct distribution can be steered towards a desired species. DFT structure and potential energy calculations disclose that the most stable ground-state conformer is an enol species and that the photodynamics may proceed differently depending on the excited state that is reached. With matrix isolation infrared spectroscopy, the predominance of the enol conformer of PESA is confirmed. Illumination of the cryogenic sample with different wavelengths shifts the ratio of enol and keto products, and by sequential irradiation a selective re- and depopulation is possible. Femtosecond transient absorption spectroscopy further reveals that also at room temperature, the outcome of the photoreaction depends on excitation wavelength, and in combination with the calculations, it can be rationalized that the decisive step occurs within the first hundred femtoseconds. Since the ultrafast dynamics mostly match those of similar salicylimines, our findings might also apply to those systems and provide additional insight into their reported sensitivity on excitation energy.


Assuntos
Prótons , Teoria Quântica , Fotoquímica , Espectrofotometria Infravermelho
9.
Angew Chem Int Ed Engl ; 61(49): e202212112, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36112055

RESUMO

Photochemical studies on supramolecular hosts that can encapsulate small guest molecules commonly focus on three aspects: photoswitching the cage to release or trap the guest, the effect of the confining environment on the guest, and light-induced exciton or charge transfer within the cage structure. Here, we exploit ultrafast spectroscopy to address how the guest alters the photoswitching characteristics of the cage. For this, the impacts of three disparate guest compounds on ring-opening or ring-closure of a dithienylethene (DTE) ligand in a photoswitchable DTE-based coordination cage are juxtaposed. The guest modulates both outcome and timescale of the cage's photodynamics, by an interplay of structural strain, heavy-atom effect, and enhancement of charge-transfer processes exercised by the guest on the photo-excited cage. The approach might prove beneficial for attuning the applicability of photoswitchable nanocontainers and desired guest compounds.


Assuntos
Ligantes , Análise Espectral
10.
Angew Chem Int Ed Engl ; 61(49): e202208611, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36111586

RESUMO

Chemical bond activations mediated by H-bond interactions involving highly electronegative elements such as nitrogen and oxygen are powerful tactics in modern catalysis research. On the contrary, kindred catalytic regimes in which heavier, less electronegative elements such as selenium engage in H-bond interactions to co-activate C-Se σ-bonds under oxidative conditions are elusive. Traditional strategies to enhance the nucleofugality of selenium residues predicate on the oxidative addition of electrophiles onto SeII -centers, which entails the elimination of the resulting SeIV moieties. Catalytic procedures in which SeIV nucleofuges are substituted rather than eliminated are very rare and, so far, not applicable to carbon-carbon bond formations. In this study, we introduce an unprecedented combination of O-H⋅⋅⋅Se H-bond interactions and single electron oxidation to catalytically generate SeIII nucleofuges that allow for the formation of new C-C σ-bonds by means of a type I semipinacol process in high yields and excellent selectivity.

11.
J Am Chem Soc ; 143(2): 724-735, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33423466

RESUMO

Preorganization and aggregation in photoredox catalysis can significantly affect reactivities or selectivities but are often neglected in synthetic and mechanistic studies, since the averaging effect of flexible ensembles can effectively hide the key activation signatures. In addition, aggregation effects are often overlooked due to highly diluted samples used in many UV studies. One prominent example is Knowles's acceleration effect of thiophenol in proton-coupled electron transfer mediated hydroamidations, for which mainly radical properties were discussed. Here, cooperative reactivity enhancements of thiophenol/disulfide mixtures reveal the importance of H-bond networks. For the first time an in-depth NMR spectroscopic aggregation and H-bond analysis of donor and acceptor combined with MD simulations was performed revealing that thiophenol acts also as an acid. The formed phosphate-H+-phosphate dimers provide an extended H-bond network with amides allowing a productive regeneration of the photocatalyst to become effective. The radical and acidic properties of PhSH were substituted by Ph2S2 and phosphoric acid. This provides a handle for optimization of radical and ionic channels and yields accelerations up to 1 order of magnitude under synthetic conditions. Reaction profiles with different light intensities unveil photogenerated amidyl radical reservoirs lasting over minutes, substantiating the positive effect of the H-bond network prior to radical cyclization. We expect the presented concepts of effective activation via H-bond networks and the reactivity improvement via the separation of ionic and radical channels to be generally applicable in photoredox catalysis. In addition, this study shows that control of aggregates and ensembles will be a key to future photocatalysis.

12.
Chemistry ; 27(51): 13052-13058, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196061

RESUMO

We introduce a simple way to liquify rare earth metals (REM) by incorporating the corresponding cations, in particular Eu3+ , La3+ , and Y3+ , into polyvalent ionic liquids (ILs). In contrast to conventional methods, this is achieved not by transforming them into anionic complexes, but by keeping them as bare cations and combining them with convenient, cheap and commercially available anions (A) in the form [REM3+ ][A- ]3 . To do so, we follow the COncept of Melting Point Lowering due to EThoxylation (COMPLET) with alkyl polyethylene oxide carboxylates as anions. We provide basic properties, such as glass transition temperatures, viscosities, electrical conductivities, as well as water-octanol partition constants P and show that these ILs have remarkably different properties, despite the similarity of their cations. In addition, we show that the ionic liquids possess interesting luminescent properties as non-conventional fluorophores.

13.
Chemistry ; 27(22): 6783-6794, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33755263

RESUMO

Complexes of RhI and IrI of the [M(COD)(NHC)X] type (where M=Rh or Ir, COD=1,5-cyclooctadiene, NHC=N-heterocyclic carbene, and X=halide) have recently shown promising cytotoxic activities against several cancer cell lines. Initial mechanism of action studies provided some knowledge about their interaction with DNA and proteins. However, information about their cellular localization remains scarce owing to luminescence quenching within this complex type. Herein, the synthesis of two rare examples of luminescent RhI and IrI [M(COD)(NHC)I] complexes with 1,8-naphthalimide-based emitting ligands is reported. All new complexes are comprehensively characterized, including with single-crystal X-ray structures. Steric crowding in one derivative leads to two distinct rotamers in solution, which apparently can be distinguished both by pronounced NMR shifts and by their respective spectral and temporal emission signatures. When the photophysical properties of these new complexes are exploited for cellular imaging in HT-29 and PT-45 cancer cell lines, it is demonstrated that the complexes accumulate predominantly in the endoplasmic reticulum, which is an entirely new finding and provides the first insight into the cellular localization of such IrI (NHC) complexes.


Assuntos
Irídio , Compostos Organometálicos , Retículo Endoplasmático , Luminescência , Metano/análogos & derivados , Estrutura Molecular
14.
Phys Chem Chem Phys ; 23(12): 7321-7332, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876092

RESUMO

Photoswitchable cages that confine small guest molecules inside their cavities offer a way to control the binding/unbinding process through irradiation with light of different wavelengths. However, detailed characterization of the structural and thermodynamic consequences of photoswitching is very challenging to achieve by experiments alone. Thus, all-atom molecular dynamics (MD) simulations were carried out to gain insight into the relationship between the structure and binding affinity. Binding free energies of the B12F122- guest were obtained for all photochemically accessible forms of a photoswitchable dithienylethene (DTE) based coordination cage. The MD simulations show that successive photo-induced closure of the four individual DTE ligands that form the cage gradually decreases the binding affinity. Closure of the first ligand significantly lowers the unbinding barrier and the binding free energy, and therefore favours guest unbinding both kinetically and thermodynamically. The analysis of different enthalpy contributions to the free energy shows that binding is enthalpically unfavourable and thus is an entropy-driven process, in agreement with the experimental data. Separating the enthalpy into the contributions from electrostatic, van der Waals, and bonded interactions in the force field shows that the unfavourable binding enthalpy is due to the bonded interactions being more favourable in the dissociated state, suggesting the presence of structural strain in the bound complex. Thus, the simulations provide microscopic explanations for the experimental findings and provide a possible route towards the targeted design of switchable nanocontainers with modified binding properties.

15.
Phys Chem Chem Phys ; 23(12): 7480-7494, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33876108

RESUMO

We investigate how the absorption and fluorescence of halogenated imidazolium compounds in acetonitrile solution is influenced by the presence of counterions and the ability to act as halogen-bond donors. Experimental measurements and quantum chemical calculations with correlated wavefunction methods are applied to study three monodentate halogen-bond complexes of iodo-imidazolium, iodo-benzimidazolium and bromo-benzimidazolium cations with triflate counterions, and a bidentate complex of bis(iodo-benzimidazolium) dications with chloride as counterion. The three monodentate complexes with triflate counterions relax after photoexcitation to minima on the S1 potential energy surface where the C-I bond and the IO halogen bond are partially broken. For the bidentate complex with the smaller chloride counterion the halogen-bond interaction stays intact in the S1 minimum that is reached by relaxation from the Franck-Condon point. In a complementing experimental approach, stationary absorption and emission as well as transient fluorescence spectra are recorded for iodo- and bromo-benzimidazolium in acetonitrile. Variation of the counterion, substitution of the iodine by bromine, hydrogen, or methyl, and the comparison to theory allows the identification of spectroscopic signatures and photoinduced dynamics associated with ion-pairing.

16.
Phys Chem Chem Phys ; 23(42): 24187-24199, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34679150

RESUMO

Transition metal complexes capable of releasing small molecules such as carbon monoxide and nitric oxide upon photoactivation are versatile tools in various fields of chemistry and biology. In this work, we report on the ultrafast photochemistry of [Mo(CO)2(NO)(iPr3tacn)]PF6 (iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclononane), which was characterized under continuous illumination and with femtosecond UV-pump/UV-probe and UV-pump/MIR-probe spectroscopy, as well as with stationary calculations. The experimental and theoretical results demonstrate that while the photodissociation of one of the two CO ligands upon UV excitation can be inferred both on an ultrafast timescale as well as under exposure times of several minutes, no evidence of NO release is observed under the same conditions. The binding mode of the diatomic ligands is impacted by the electronic excitation, and transient intermediates are observed on a timescale of tens of picoseconds before CO is released from the coordination sphere. Furthermore, based on calculated potential energy scans, we suggest that photolysis of NO could be possible after a subsequent excitation of an electronically excited state with a second laser pulse, or by accessing low-lying excited states that otherwise cannot be directly excited by light.

17.
Angew Chem Int Ed Engl ; 59(48): 21640-21647, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32757341

RESUMO

The photochemical deracemization of spiro[cyclopropane-1,3'-indolin]-2'-ones (spirocyclopropyl oxindoles) was studied. The corresponding 2,2-dichloro compound is configurationally labile upon direct irradiation at λ=350 nm and upon irradiation at λ=405 nm in the presence of achiral thioxanthen-9-one as the sensitizer. The triplet 1,3-diradical intermediate generated in the latter reaction was detected by transient absorption spectroscopy and its lifetime determined (τ=22 µs). Using a chiral thioxanthone or xanthone, with a lactam hydrogen bonding site as a photosensitizer, allowed the deracemization of differently substituted chiral spirocyclopropyl oxindoles with yields of 65-98 % and in 50-85 % ee (17 examples). Three mechanistic contributions were identified to co-act favorably for high enantioselectivity: the difference in binding constants to the chiral thioxanthone, the smaller molecular distance in the complex of the minor enantiomer, and the lifetime of the intermediate 1,3-diradical.

18.
J Org Chem ; 84(18): 11450-11457, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31343881

RESUMO

We investigate the effects of small admixtures of protic solvent molecules, such as water and alcohols, on the ultrafast dynamics of diphenylcarbene in acetonitrile at room temperature. Broadband transient absorption measurements and quantum mechanics/molecular mechanics molecular dynamics simulations allow elucidating the dominant reaction mechanism of an intermediate hydrogen-bonded complex between singlet diphenylcarbene and a protic solvent molecule, thus competing with intersystem crossing. Analysis of the data indicates that complex formation is a diffusion-controlled process with orientational requirements. The reaction path involving a benzhydryl cation is less likely in neat bulkier alcohols, as it requires the interaction of the carbene with a protic solvent molecule being part of a hydrogen-bonded network. The simulations indicate a further reaction path toward O-H insertion and two side reactions depending on the involved protic solvent species. Thus, we established that not only the number but also the chemical nature of the protic solvent molecule determine which reaction path is pursued.

19.
Chemphyschem ; 19(1): 138-147, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29028145

RESUMO

Tetrazolium salts are exploited in various fields of research by virtue of their low reduction potentials. Increasingly, associated applications also attend to the photochemical and luminescence properties of these systems. Here, we investigate the photoinduced dynamics of phenyl-benzo[c]tetrazolo-cinnolinium chloride (PTC), one of the very few known fluorescent tetrazolium compounds, by using time-correlated single-photon counting, femtosecond fluorescence upconversion, and ultrafast transient absorption spectroscopy. PTC is generated photochemically by ultraviolet illumination of 2,3,5-triphenyl-tetrazolium chloride (TTC) in various alcohols. Time-resolved fluorescence measurements on PTC with different excitation wavelengths disclose biphasic solvation and vibrational relaxation dynamics. Depending on the solvent, the emission behavior of PTC is characterized by quantum yields on the order of several tens of percent and corresponding excited-state lifetimes of several hundreds of picoseconds. The radiative rate is basically constant for the studied alcohols, whereas the rate of the competing non-radiative process is sensitive to the solvent polarity. Hence, we discuss the possible involvement of intermediate radicals and further presumptive reaction pathways pursued after photoexcitation of PTC.

20.
Phys Chem Chem Phys ; 20(27): 18169-18175, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29947622

RESUMO

Very short fluorescence lifetimes evidence ultrafast deactivation of photoexcited molecules. To unveil the underlying mechanism for two compounds exhibiting (sub)picosecond emission dynamics, we combine femtosecond fluorescence upconversion with high-pressure liquid-phase spectroscopy. For the triazene berenil, the absence of a pressure dependence corroborates a bicycle-pedal motion as deactivating process. In the thiacyanine NK88 which may undergo a bi-phasic deactivation, our results suggest that kilobar pressures lead to a modification of the excited-state potential energy surface, thereby changing the branching ratio of two competing pathways and opening a possibility to steer the product distribution of the photoreaction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa