Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(5): 104635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963490

RESUMO

Energy balance and nutrient availability are key determinants of cellular decisions to remain quiescent, proliferate, or differentiate into a mature cell. After assessing its environmental state, the cell must rewire its metabolism to support distinct cellular outcomes. Mechanistically, how metabolites regulate cell fate decisions is poorly understood. We used adipogenesis as our model system to ascertain the role of metabolism in differentiation. We isolated adipose tissue stromal vascular fraction cells and profiled metabolites before and after adipogenic differentiation to identify metabolic signatures associated with these distinct cellular states. We found that differentiation alters nucleotide accumulation. Furthermore, inhibition of nucleotide biosynthesis prevented lipid storage within adipocytes and downregulated the expression of lipogenic factors. In contrast to proliferating cells, in which mechanistic target of rapamycin complex 1 is activated by purine accumulation, mechanistic target of rapamycin complex 1 signaling was unaffected by purine levels in differentiating adipocytes. Rather, our data indicated that purines regulate transcriptional activators of adipogenesis, peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α, to promote differentiation. Although de novo nucleotide biosynthesis has mainly been studied in proliferation, our study points to its requirement in adipocyte differentiation.


Assuntos
Adipogenia , Metabolismo dos Lipídeos , Nucleotídeos , Animais , Camundongos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Nucleotídeos/biossíntese , Purinas/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transdução de Sinais
2.
Front Physiol ; 13: 821278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283790

RESUMO

Obesity is a growing health concern worldwide because of its contribution to metabolic syndrome, type II diabetes, insulin resistance (IR), and numerous cancers. In obesity, white adipose tissue (WAT) expands through two mechanisms: increase in adipocyte cell number by precursor cell differentiation through the process of adipogenesis (hyperplasia) and increase in existing mature adipocyte cell size (hypertrophy). While hypertrophy is associated with the negative effects of obesity on metabolic health, such as inflammation and lipotoxicity, adipogenesis prevents obesity-mediated metabolic decline. Moreover, in metabolically healthy obesity adipogenesis is increased. Thus, it is vital to understand the mechanistic basis for adipose expansion to inform novel therapeutic approaches to mitigate the dysfunction of this tissue and associated diseases. In this mini-review, we summarize recent studies on the regulation of adipogenesis and provide a perspective on targeting adipogenesis as a potential therapeutic avenue for metabolic disorders.

3.
Cell Rep ; 36(2): 109345, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260923

RESUMO

Upon nutrient stimulation, pre-adipocytes undergo differentiation to transform into mature adipocytes capable of storing nutrients as fat. We profiled cellular metabolite consumption to identify early metabolic drivers of adipocyte differentiation. We find that adipocyte differentiation raises the uptake and consumption of numerous amino acids. In particular, branched-chain amino acid (BCAA) catabolism precedes and promotes peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of adipogenesis. In early adipogenesis, the mitochondrial sirtuin SIRT4 elevates BCAA catabolism through the activation of methylcrotonyl-coenzyme A (CoA) carboxylase (MCCC). MCCC supports leucine oxidation by catalyzing the carboxylation of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA. Sirtuin 4 (SIRT4) expression is decreased in adipose tissue of numerous diabetic mouse models, and its expression is most correlated with BCAA enzymes, suggesting a potential role for SIRT4 in adipose pathology through the alteration of BCAA metabolism. In summary, this work provides a temporal analysis of adipocyte differentiation and uncovers early metabolic events that stimulate transcriptional reprogramming.


Assuntos
Adipogenia , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas Mitocondriais/metabolismo , Sirtuínas/metabolismo , Células 3T3-L1 , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa