Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(10): 5705-5715, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32681718

RESUMO

Eutrophication of fresh waters results in increased CO2 uptake by primary production, but at the same time increased emissions of CH4 to the atmosphere. Given the contrasting effects of CO2 uptake and CH4 release, the net effect of eutrophication on the CO2 -equivalent balance of fresh waters is not clear. We measured carbon fluxes (CO2 and CH4 diffusion, CH4 ebullition) and CH4 oxidation in 20 freshwater mesocosms with 10 different nutrient concentrations (total phosphorus range: mesotrophic 39 µg/L until hypereutrophic 939 µg/L) and planktivorous fish in half of them. We found that the CO2 -equivalent balance had a U-shaped relationship with productivity, up to a threshold in hypereutrophic systems. CO2 -equivalent sinks were confined to a narrow range of net ecosystem production (NEP) between 5 and 19 mmol O2  m-3  day-1 . Our findings indicate that eutrophication can shift fresh waters from sources to sinks of CO2 -equivalents due to enhanced CO2 uptake, but continued eutrophication enhances CH4 emission and transforms freshwater ecosystems to net sources of CO2 -equivalents to the atmosphere. Nutrient enrichment but also planktivorous fish presence increased productivity, thereby regulating the resulting CO2 -equivalent balance. Increasing planktivorous fish abundance, often concomitant with eutrophication, will consequently likely affect the CO2 -equivalent balance of fresh waters.


Assuntos
Dióxido de Carbono , Ecossistema , Animais , Ciclo do Carbono , Água Doce , Metano
2.
Water Res ; 144: 172-182, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029076

RESUMO

Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64 °N. THg concentrations (0.06-2.78 ng L-1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8-159 pg L-1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.


Assuntos
Compostos de Metilmercúrio/química , Rios/química , Poluentes Químicos da Água/química , Ecossistema , Monitoramento Ambiental/métodos , Europa (Continente) , Lagos/química , Mercúrio/análise , Mercúrio/química , Compostos de Metilmercúrio/análise , Solo/química , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 34(9): 2004-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25891024

RESUMO

Fuel pollution is a significant problem in Antarctica, especially in areas where human activities occur, such as at scientific research stations. Despite this, there is little information on the effects of petroleum hydrocarbons on Antarctic terrestrial biota. The authors demonstrate that the Antarctic mosses Bryum pseudotriquetrum, Schistidium antarctici, and Ceratodon purpureus, and the Antarctic terrestrial alga Prasiola crispa are relatively tolerant to Special Antarctic Blend (SAB) fuel-contaminated soil (measured as total petroleum hydrocarbons). Freshly spiked soils were more toxic to all species than were aged soils containing degraded fuel, as measured by photosynthetic efficiency (variable fluorescence/maximum fluorescence [Fv/Fm]), pigment content, and visual observations. Concentrations that caused 20% inhibition ranged from 16,600 mg/kg to 53,200 mg/kg for freshly spiked soils and from 30,100 mg/kg to 56,200 mg/kg for aged soils. The photosynthetic efficiency of C. purpureus and S. antarctici was significantly inhibited by exposure to freshly spiked soils with lowest-observed-effect concentrations of 27,900 mg/kg and 40,400 mg/kg, respectively. Prasiola crispa was the most sensitive species to freshly spiked soils (Fv/Fm lowest-observed-effect concentration 6700 mg/kg), whereas the Fv/Fm of B. pseudotriquetrum was unaffected by exposure to SAB fuel even at the highest concentration tested (62,900 mg/kg). Standard toxicity test methods developed for nonvascular plants can be used in future risk assessments, and sensitivity data will contribute to the development of remediation targets for petroleum hydrocarbons to guide remediation activities in Antarctica.


Assuntos
Bryopsida/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Regiões Antárticas , Biodegradação Ambiental , Bryopsida/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Humanos , Hidrocarbonetos/química , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Medição de Risco , Microbiologia do Solo , Poluentes do Solo/química , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa