Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(3): 2253-2260, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33759053

RESUMO

Pumpkins (Cucurbita spp.) are among most neglected and underutilized crops cultivated for food and medicine. The major constraint to pumpkin production is lack of genetically improved seeds. The current study was aimed at evaluating the genetic diversity of pumpkins from eight counties in western Kenya using five SSR markers. Seeds were extracted from pumpkin fruits, dried and planted on plastic trays for 4 weeks. DNA was isolated from young leaves using CTAB method and amplified. The samples were genotyped using an ABI 3730 genetic analyzer and the allelic data analyzed using Power Marker V 3.25, DARwin V 6.0.12 and GenAIEx V 6.41software. The five SSR loci were polymorphic with a total of 33 alleles and a mean PIC value of 0.534. The gene diversity and observed heterozygosity was 0.796-0.329 and 0.967-0.164, respectively. Most of genetic variations were found within and among individual samples rather than among counties, with samples of some counties having private alleles. Based on the inbreeding coefficient (F), there was outbreeding in pumpkins from Kakamega county (F = - 0.282) and inbreeding in pumpkins from Kisii, Bungoma and Nyamira counties (F = 0.500, 0.409 and 0.286 respectively). The findings of this study suggest that genetic variation and distribution of pumpkins in western Kenya was due to monocropping and intercropping farming systems, trading of pumpkins in markets and exchange of seeds among local farmers rather than geographical and climatic differences.


Assuntos
Cucurbita/genética , Variação Genética , Repetições de Microssatélites/genética , Alelos , Frequência do Gene/genética , Genética Populacional , Quênia , Filogenia , Polimorfismo Genético , Análise de Componente Principal
2.
Front Plant Sci ; 8: 1168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785268

RESUMO

Genetic mapping of quantitative trait loci (QTL) for resistance to cassava brown streak disease (CBSD), cassava mosaic disease (CMD), and cassava green mite (CGM) was performed using an F1 cross developed between the Tanzanian landrace, Kiroba, and a breeding line, AR37-80. The population was evaluated for two consecutive years in two sites in Tanzania. A genetic linkage map was derived from 106 F1 progeny and 1,974 SNP markers and spanned 18 chromosomes covering a distance of 1,698 cM. Fifteen significant QTL were identified; two are associated with CBSD root necrosis only, and were detected on chromosomes V and XII, while seven were associated with CBSD foliar symptoms only and were detected on chromosomes IV, VI, XVII, and XVIII. QTL on chromosomes 11 and 15 were associated with both CBSD foliar and root necrosis symptoms. Two QTL were found to be associated with CMD and were detected on chromosomes XII and XIV, while two were associated with CGM and were identified on chromosomes V and X. There are large Manihot glaziovii introgression regions in Kiroba on chromosomes I, XVII, and XVIII. The introgression segments on chromosomes XVII and XVIII overlap with QTL associated with CBSD foliar symptoms. The introgression region on chromosome I is of a different haplotype to the characteristic "Amani haplotype" found in the landrace Namikonga and others, and unlike some other genotypes, Kiroba does not have a large introgression block on chromosome IV. Kiroba is closely related to a sampled Tanzanian "tree cassava." This supports the observation that some of the QTL associated with CBSD resistance in Kiroba are different to those observed in another variety, Namikonga.

3.
Ticks Tick Borne Dis ; 7(1): 26-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26278352

RESUMO

Rhipicephalus appendiculatus is an important tick vector of several pathogens and parasitizes domestic and wild animals across eastern and southern Africa. However, its inherent genetic variation and population structure is poorly understood. To investigate whether mammalian host species, geographic separation and resulting reproductive isolation, or a combination of these, define the genetic structure of R. appendiculatus, we analyzed multi-locus genotype data from 392 individuals from 10 geographic locations in Kenya generated in an earlier study. These ticks were associated with three types of mammalian host situations; (1) cattle grazing systems, (2) cattle and wildlife co-grazing systems (3) wildlife grazing systems without livestock. We also analyzed data from 460 individuals from 10 populations maintained as closed laboratory stocks and 117 individuals from five other species in the genus Rhipicephalus. The pattern of genotypes observed indicated low levels of genetic differentiation between the ten field populations (FST=0.014±0.002) and a lack of genetic divergence corresponding to the degree of separation of the geographic sampling locations. There was also no clear association of particular tick genotypes with specific host species. This is consistent with tick dispersal over large geographic ranges and lack of host specificity. In contrast, the 10 laboratory populations (FST=0.248±0.015) and the five other species of Rhipicephalus (FST=0.368±0.032) were strongly differentiated into distinct genetic groups. Some laboratory bred populations diverged markedly from their field counterparts in spite of originally being sampled from the same geographic locations. Our results demonstrate a lack of defined population genetic differentiation in field populations of the generalist R. appendiculatus in Kenya, which may be a result of the frequent anthropogenic movement of livestock and mobility of its several wildlife hosts between different locations.


Assuntos
Genótipo , Rhipicephalus/genética , Alelos , Distribuição Animal , Animais , Quênia
4.
Ticks Tick Borne Dis ; 3(3): 128-36, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22789728

RESUMO

Biological differences, including vector competence for the protozoan parasite Theileria parva have been reported among populations of Rhipicephalus appendiculatus (Acari: Ixodidae) from different geographic regions. However, the genetic diversity and population structure of this important tick vector remain unknown due to the absence of appropriate genetic markers. Here, we describe the development and evaluation of a panel of EST micro- and minisatellite markers to characterize the genetic diversity within and between populations of R. appendiculatus and other rhipicephaline species. Sixty-six micro- and minisatellite markers were identified through analysis of the R. appendiculatus Gene Index (RaGI) EST database and selected bacterial artificial chromosome (BAC) sequences. These were used to genotype 979 individual ticks from 10 field populations, 10 laboratory-bred stocks, and 5 additional Rhipicephalus species. Twenty-nine markers were polymorphic and therefore informative for genetic studies while 6 were monomorphic. Primers designed from the remaining 31 loci did not reliably generate amplicons. The 29 polymorphic markers discriminated populations of R. appendiculatus and also 4 other Rhipicephalus species, but not R. zambeziensis. The percentage Principal Component Analysis (PCA) implemented using Multiple Co-inertia Analysis (MCoA) clustered populations of R. appendiculatus into 2 groups. Individual markers however differed in their ability to generate the reference typology using the MCoA approach. This indicates that different panels of markers may be required for different applications. The 29 informative polymorphic micro- and minisatellite markers are the first available tools for the analysis of the phylogeography and population genetics of R. appendiculatus.


Assuntos
Vetores Aracnídeos/genética , Etiquetas de Sequências Expressas , Repetições de Microssatélites/genética , Repetições Minissatélites/genética , Rhipicephalus/genética , Animais , Vetores Aracnídeos/parasitologia , Cromossomos Artificiais Bacterianos , Feminino , Marcadores Genéticos , Variação Genética , Genótipo , Rhipicephalus/parasitologia , Especificidade da Espécie , Theileria parva/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa