Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(14): 8679-8686, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39086925

RESUMO

Efficient near-infrared (NIR) laser marking on transparent polymers like polypropylene, epoxy, and polyethylene has posed a big challenge due to their lack of absorption in the NIR. Currently, inorganic additives are used to improve NIR laser marking efficiency, but they come with issues such as toxicity, high loading requirement, adverse effects on color/opaqueness, and the need for low laser head speeds. Herein, we report a new strategy of incorporating a food-grade, Mg2Al-CO3 LDH as a boosting coadditive alongside the commercial NIR laser marking additive (Iriotech 8815) in an epoxy system. Our findings demonstrate that the incorporation of Mg2Al-CO3 LDH can significantly increase both the darkness and contrast of marking even at high laser head speed (5000 mm/s), while minimizing surface damage. Notably, by replacing 95% of Iriotech 8815 with Mg2Al-CO3 LDH, an epoxy plate can exhibit high transparency, while producing dark, sharply defined markings with excellent readable QR code markings at high laser speeds. This result offers a promising solution for enhancing high-speed NIR laser marking on transparent polymers with additional advantages of lower toxicity and cost and with minimal optical interference from high additive loadings.

2.
Chem Commun (Camb) ; 60(8): 1039-1042, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174580

RESUMO

We have studied the size-dependent optical scattering of aqueous suspensions containing Mg2Al-LDH platelets, which exhibit high total- and side-scatterings. By incorporating 3 wt% Mg2Al-LDH platelets (280 nm) in a commercial sunscreen formulation, we achieved a twofold Sun Protection Factor boost, providing a promising, high-efficient and non-toxic strategy to enhance sunscreen effectiveness.

3.
Dalton Trans ; 53(14): 6200-6206, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482861

RESUMO

The effect of calcination conditions (ramp rate, calcination temperature and time) on the formation of Mg2Al layered double oxides (Mg2Al LDOs) as well as their CO2 capture performance, has been systematically investigated. This study explores novel insights into the intricate relationship between these calcination conditions and the resulting surface characteristics, which play a vital role in CO2 capture efficiency. Notably, it is revealed that a rapid ramp rate (100 °C min-1) significantly increases surface area and hydroxyl concentration, leading to a 69% increase in CO2 capture efficiency compared to slower ramp rate. Conversely, short calcination times (1 h) and fast ramp rates (100 °C min-1) are observed to compromise CO2 adsorption due to the presence of dehydrated LDHs. A critical acid : base ratio of 0.37, achieved from a fast ramp rate (100 °C min-1) at 400 °C for 2 h, was found as a key threshold for optimising surface properties, effectively balancing favourable hydroxyl and less favourable strong acid sites, thereby maximizing CO2 capture performance.

4.
Organometallics ; 43(4): 540-556, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425384

RESUMO

A family of ansa-permethylindenyl-phenoxy (PHENI*) transition-metal chloride complexes has been synthesized and characterized (1-7; {(η5-C9Me6)Me(R″)Si(2-R-4-R'-C6H2O)}MCl2; R,R' = Me, tBu, Cumyl (CMe2Ph); R″ = Me, nPr, Ph; M = Ti, Zr, Hf). The ancillary chloride ligands could readily be exchanged with halides, alkyls, alkoxides, aryloxides, or amides to form PHENI* complexes [L]TiX2 (8-17; X = Br, I, Me, CH2SiMe3, CH2Ph, NMe2, OEt, ODipp). The solid-state crystal structures of these PHENI* complexes indicate that one of two conformations may be preferred, parametrized by a characteristic torsion angle (TA'), in which the η5 system is either disposed away from the metal center or toward it. Compared to indenyl PHENICS complexes, the permethylindenyl (I*) ligand appears to favor a conformation in which the metal center is more accessible. When heterogenized on solid polymethylaluminoxane (sMAO), titanium PHENI* complexes exhibit exceptional catalytic activity toward the polymerization of ethylene. Substantially greater activities are reported than for comparable PHENICS catalysts, along with the formation of ultrahigh-molecular-weight polyethylenes (UHMWPE). Catalyst-cocatalyst ion pairing effects are observed in cationization experiments and found to be significant in homogeneous catalytic regimes; these effects are also related to the influence of the ancillary ligand leaving groups in slurry-phase polymerizations. Catalytic efficiency and polyethylene molecular weight are found to increase with pressure, and PHENI* catalysts can be categorized as being among the most active for the controlled synthesis of UHMWPE.

5.
Chemosphere ; 361: 142555, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851500

RESUMO

Easy synthesis of efficient, non-toxic photocatalysts is a target to expand their potential applications. In this research, the role of Eu3+ doping in the non-toxic, affordable, and easily prepared MgAl hydrotalcite-like compounds (HTlcs) was explored in order to prepare visible light semiconductors. Eu doped MgAl-HTlcs (MA-xEu) samples were prepared using a simple coprecipitation method (water, room temperature and atmospheric pressure) and europium was successfully incorporated into MgAl HTlc frameworks at various concentrations, with x (Eu3+/M3+ percentage) ranging from 2 to 15. Due to the higher ionic radius and lower polarizability of Eu3+ cation, its presence in the metal hydroxide layer induces slight structural distortions, which eventually affect the growth of the particles. The specific surface area also increases with the Eu content. Moreover, the presence of Eu3+ 4f energy levels in the electronic structure enables the absorption of visible light in the doped MA-xEu samples and contributes to efficient electron-hole separation. The microstructural and electronic changes induced by the insertion of Eu enable the preparation of visible light MgAl-based HTlcs photocatalysts for air purification purposes. Specifically, the optimal HTlc photocatalyst showed improved NOx removal efficiency, ∼ 51% (UV-Vis) and 39% (visible light irradiation, 420 nm), with excellent selectivity (> 96 %), stability (> 7 h), and enhanced release of •O2- radicals. Such results demonstrate a simple way to design photocatalytic HTlcs suitable for air purification technologies.


Assuntos
Hidróxido de Alumínio , Európio , Hidróxido de Magnésio , Óxidos de Nitrogênio , Oxirredução , Európio/química , Catálise , Hidróxido de Magnésio/química , Hidróxido de Alumínio/química , Óxidos de Nitrogênio/química , Processos Fotoquímicos , Luz , Poluentes Atmosféricos/química
6.
J Phys Chem Lett ; 15(7): 2006-2014, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349852

RESUMO

Improving the efficiency of the oxygen evolution reaction (OER) is crucial for advancing sustainable and environmentally friendly hydrogen energy. Layered double hydroxides (LDHs) have emerged as promising electrocatalysts for the OER. However, a thorough understanding of the impact of structural disorder and defects on the catalytic activity of LDHs remains limited. In this work, a series of NiAl-LDH models are systematically constructed, and their OER performance is rigorously screened through theoretical density functional theory. The acquired results unequivocally reveal that the energy increase induced by structural disorder is effectively counteracted at the defect surface, indicating the coexistence of defects and disorder. Notably, it is ascertained that the simultaneous presence of defects and disorder synergistically augments the catalytic activity of LDHs in the context of the OER. These theoretical findings offer valuable insights into the design of highly efficient OER catalysts while also shedding light on the efficacy of LDH electrocatalysts.

7.
Chem Commun (Camb) ; 60(56): 7204-7207, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38910507

RESUMO

Reduction of [Mg(NON)]2 ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) affords Mg(I) species containing NON- and NNO-ligands ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(I) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg-Mg(NNO)] with a structurally characterised Mg-Mg bond that was examined using density functional theory.

8.
Dalton Trans ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046465

RESUMO

Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.

9.
Dalton Trans ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057836

RESUMO

Herein, initially, we present a general overview of the global financial support for chemistry devoted to materials science, specifically intercalation layered compounds (ILCs). Subsequently, the strategies to synthesise these host structures and the corresponding guest-host hybrid assemblies are exemplified on the basis of some families of materials, including pillared clays (PILCs), porous clay heterostructures (PCHs), zirconium phosphate (ZrP), layered double hydroxides (LDHs), graphite intercalation compounds (GICs), graphene-based materials, and MXenes. Additionally, a non-exhaustive survey on their possible application in the field of energy through electrochemical storage, mostly as electrode materials but also as electrolyte additives, is presented, including lithium technologies based on lithium ion batteries (LIBs), and beyond LiBs with a focus on possible alternatives such XIBs (X = Na (NIB), K (KIB), Al (AIB), Zn (ZIB), and Cl (CIB)), reversible Mg batteries (RMBs), dual-ion batteries (DIBs), Zn-air and Zn-sulphur batteries and supercapacitors as well as their relevance in other fields related to (opto)electronics. This selective panorama should help readers better understand the reason why ILCs are expected to meet the challenge of tomorrow as electrode materials.

10.
Chem Sci ; 15(32): 13021-13031, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39148794

RESUMO

The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g-1) in comparison to the corresponding pristine seven coordinated Ca-7OH/H2O-LDH (191.2 mg g-1). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.

11.
Chem Sci ; 15(1): 250-258, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131091

RESUMO

Using a highly active permethylindenyl-phenoxy (PHENI*) titanium catalyst, high to ultra-high molecular weight ethylene-linear-α-olefin (E/LAO) copolymers are prepared in high yields under mild conditions (2 bar, 30-90 °C). Controllable, efficient, and predictable comonomer enchainment provides access to a continuum of copolymer compositions and a vast range of material properties using a single monomer-agnostic catalyst. Multivariate statistical tools are employed that combine the tuneability of this system with the analytical and predictive power of data-derived models, this enables the targeting of polyolefins with designer properties directly through predictive alteration of reaction conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa