Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Int J Mol Sci ; 24(7)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047805

RESUMO

Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies. The immunophenotype of the cells involved and the interplay between them and their secreted factors are crucial to understanding disease progression and future treatment options. T cell populations are markedly distinct, including increased levels of Th17 and follicular helper T cells (Tfh), while Treg cells appear to be impaired. Some B cells subsets are autoreactive, and anti-TSHR antibodies are the key disease-causing outcome of this interplay. Though some consensus across phenotyping studies will be discussed here, there are also complexities that are yet to be resolved. A better understanding of the immunophenotype of Graves' disease can lead to improved treatment strategies and novel drug targets.


Assuntos
Doença de Graves , Doença de Hashimoto , Humanos , Doença de Graves/etiologia , Receptores da Tireotropina , Autoanticorpos , Hormônios Tireóideos , Linfócitos T Reguladores
2.
Exp Cell Res ; 403(1): 112567, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812866

RESUMO

We chose to evaluate Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) as a possible biomarker for prostate cancer due to its involvement in nucleotide synthesis and cell cycle progression. We utilized two prostate cancer cell lines (PC3 and DU145) along with patient tissue and knockdowns to evaluate overall HPRT expression. The surface localization of HPRT was determined utilizing flow cytometry, confocal microscopy, and scanning electron microscopy followed by ADCC to evaluate targeting potential. We found significant upregulation of HPRT within malignant samples with approximately 47% of patients had elevated levels of HPRT compared to normal controls. We also observed a significant association between HPRT and the plasma membrane of DU145 cells (p = 0.0004), but found no presence on PC3 cells (p = 0.14). This was confirmed with scanning electron microscopy and confocal microscopy. ADCC experiments were performed to determine whether HPRT could be used as a target antigen for selective cell-mediated killing. We found that DU145 cells treated with HPRT antibodies had a significantly higher incidence of cell death than both isotype treated samples and PC3 cells treated with the same concentrations of HPRT antibody. Finally, we determined that p53 had a significant impact on HPRT expression both internally and on the surface of cancer cells. These results suggest HPRT as a possible biomarker target for the treatment of patients with prostate cancer.


Assuntos
Divisão Celular/fisiologia , Citotoxicidade Imunológica/imunologia , Hipoxantina Fosforribosiltransferase/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/imunologia , Masculino , Neoplasias da Próstata/imunologia , Proteína Supressora de Tumor p53/metabolismo
3.
Cancer Cell Int ; 20: 375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782434

RESUMO

BACKGROUND: The aim of this study is to determine whether Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) could be used as a biomarker for the diagnosis and treatment of B cell malignancies. With 4.3% of all new cancers diagnosed as Non-Hodgkin lymphoma, finding new biomarkers for the treatment of B cell cancers is an ongoing pursuit. HPRT is a nucleotide salvage pathway enzyme responsible for the synthesis of guanine and inosine throughout the cell cycle. METHODS: Raji cells were used for this analysis due to their high HPRT internal expression. Internal expression was evaluated utilizing western blotting and RNA sequencing. Surface localization was analyzed using flow cytometry, confocal microscopy, and membrane biotinylation. To determine the source of HPRT surface expression, a CRISPR knockdown of HPRT was generated and confirmed using western blotting. To determine clinical significance, patient blood samples were collected and analyzed for HPRT surface localization. RESULTS: We found surface localization of HPRT on both Raji cancer cells and in 77% of the malignant ALL samples analyzed and observed no significant expression in healthy cells. Surface expression was confirmed in Raji cells with confocal microscopy, where a direct overlap between HPRT specific antibodies and a membrane-specific dye was observed. HPRT was also detected in biotinylated membranes of Raji cells. Upon HPRT knockdown in Raji cells, we found a significant reduction in surface expression, which shows that the HPRT found on the surface originates from the cells themselves. Finally, we found that cells that had elevated levels of HPRT had a direct correlation to XRCC2, BRCA1, PIK3CA, MSH2, MSH6, WDYHV1, AK7, and BLMH expression and an inverse correlation to PRKD2, PTGS2, TCF7L2, CDH1, IL6R, MC1R, AMPD1, TLR6, and BAK1 expression. Of the 17 genes with significant correlation, 9 are involved in cellular proliferation and DNA synthesis, regulation, and repair. CONCLUSIONS: As a surface biomarker that is found on malignant cells and not on healthy cells, HPRT could be used as a surface antigen for targeted immunotherapy. In addition, the gene correlations show that HPRT may have an additional role in regulation of cancer proliferation that has not been previously discovered.

4.
Cancer Cell Int ; 20: 127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317865

RESUMO

BACKGROUND: Thymidine kinase 1 (TK1) is a pyrimidine salvage pathway enzyme that is up-regulated in malignant tissues and elevated in the serum of cancer patients. While TK1 has been well established as a tumor biomarker, little has been done to explore its potential as a tumor target. Recently, we reported the membrane expression of TK1 on malignant cells, but not on normal cells. This study explores the possible use of monoclonal antibodies for the targeting of membrane associated TK1 in lung, breast, colon and prostate cancer cells. METHODS: We generated and evaluated a panel of monoclonal antibodies against six different epitopes exposed in the tetrameric form of TK1. Antibodies were developed with hybridoma technology and validated with Western blot, siRNA TK1 knockdown, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The therapeutic potential of the antibodies was evaluated in vitro in antibody-dependent cell-mediated-cytotoxicity (ADCC) experiments. RESULTS: Binding of the antibodies to TK1 was confirmed by Western blot in purified recombinant protein, cancer serum, and cell lysate. After a TK1 knockdown was performed, a reduction of TK1 expression was observed with five antibodies. Using indirect ELISA, we identified 3B2E11, 9C10, 7H2, 3B4, 8G2 among the most sensitive antibodies (LOD = 10.73-66.9 pg/ml). Surface expression of TK1 on the membrane of various cancer cell lines was analyzed with flow cytometry. Antibodies 8G2, 3B4, 7HD and 5F7G11 detected TK1 on the membrane of various cancer cell lines, including lung, prostate, colon and breast. No significant binding was detected on normal lymphocytes. Increased cytolysis of lung (~ 70%. p = 0.0001), breast (~ 70%, p = 0.0461) and colon (~ 50% p = 0.0216) cancer cells by effector cells was observed when anti-TK1 antibodies were added during ADCC experiments. CONCLUSIONS: The antibodies developed showed potential to be used to detect and target TK1 on the membrane of various tumor cells. The targeting of TK1 in malignant cells using monoclonal antibodies may be a feasible approach for the elimination of high TK1 expressing tumor cells.

5.
Cancer Cell Int ; 19: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30679932

RESUMO

BACKGROUND: Incidence of endometrial cancer are rising both in the United States and worldwide. As endometrial cancer becomes more prominent, the need to develop and characterize biomarkers for early stage diagnosis and the treatment of endometrial cancer has become an important priority. Several biomarkers currently used to diagnose endometrial cancer are directly related to obesity. Although epigenetic and mutational biomarkers have been identified and have resulted in treatment options for patients with specific aberrations, many tumors do not harbor those specific aberrations. A promising alternative is to determine biomarkers based on differential gene expression, which can be used to estimate prognosis. METHODS: We evaluated 589 patients to determine differential expression between normal and malignant patient samples. We then supplemented these evaluations with immunohistochemistry staining of endometrial tumors and normal tissues. Additionally, we used the Library of Integrated Network-based Cellular Signatures to evaluate the effects of 1826 chemotherapy drugs on 26 cell lines to determine the effects of each drug on HPRT1 and AURKA expression. RESULTS: Expression of HPRT1, Jag2, AURKA, and PGK1 were elevated when compared to normal samples, and HPRT1 and PGK1 showed a stepwise elevation in expression that was significantly related to cancer grade. To determine the prognostic potential of these genes, we evaluated patient outcome and found that levels of both HPRT1 and AURKA were significantly correlated with overall patient survival. When evaluating drugs that had the most significant effect on lowering the expression of HPRT1 and AURKA, we found that Topo I and MEK inhibitors were most effective at reducing HPRT1 expression. Meanwhile, drugs that were effective at reducing AURKA expression were more diverse (MEK, Topo I, MELK, HDAC, etc.). The effects of these drugs on the expression of HPRT1 and AURKA provides insight into their role within cellular maintenance. CONCLUSIONS: Collectively, these data show that JAG2, AURKA, PGK1, and HRPT1 have the potential to be used independently as diagnostic, prognostic, or treatment biomarkers in endometrial cancer. Expression levels of these genes may provide physicians with insight into tumor aggressiveness and chemotherapy drugs that are well suited to individual patients.

7.
Cancer Cell Int ; 18: 135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214377

RESUMO

BACKGROUND: Lung, breast, and colorectal malignancies are the leading cause of cancer-related deaths in the world causing over 2.8 million cancer-related deaths yearly. Despite efforts to improve prevention methods, early detection, and treatments, survival rates for advanced stage lung, breast, and colon cancer remain low, indicating a critical need to identify cancer-specific biomarkers for early detection and treatment. Thymidine kinase 1 (TK1) is a nucleotide salvage pathway enzyme involved in cellular proliferation and considered an important tumor proliferation biomarker in the serum. In this study, we further characterized TK1's potential as a tumor biomarker and immunotherapeutic target and clinical relevance. METHODS: We assessed TK1 surface localization by flow cytometry and confocal microscopy in lung (NCI-H460, A549), breast (MDA-MB-231, MCF7), and colorectal (HT-29, SW620) cancer cell lines. We also isolated cell surface proteins from HT-29 cells and performed a western blot confirming the presence of TK1 on cell membrane protein fractions. To evaluate TK1's clinical relevance, we compared TK1 expression levels in normal and malignant tissue through flow cytometry and immunohistochemistry. We also analyzed RNA-Seq data from The Cancer Genome Atlas (TCGA) to assess differential expression of the TK1 gene in lung, breast, and colorectal cancer patients. RESULTS: We found significant expression of TK1 on the surface of NCI-H460, A549, MDA-MB-231, MCF7, and HT-29 cell lines and a strong association between TK1's localization with the membrane through confocal microscopy and Western blot. We found negligible TK1 surface expression in normal healthy tissue and significantly higher TK1 expression in malignant tissues. Patient data from TCGA revealed that the TK1 gene expression is upregulated in cancer patients compared to normal healthy patients. CONCLUSIONS: Our results show that TK1 localizes on the surface of lung, breast, and colorectal cell lines and is upregulated in malignant tissues and patients compared to healthy tissues and patients. We conclude that TK1 is a potential clinical biomarker for the treatment of lung, breast, and colorectal cancer.

8.
J Pharmacol Exp Ther ; 360(3): 466-475, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035006

RESUMO

Coagulation Factor XII (FXII) plays a critical role in thrombosis. What is unclear is the level of enzyme occupancy of FXIIa that is needed for efficacy and the impact of FXIIa inhibition on cerebral embolism. A selective activated FXII (FXIIa) inhibitor, recombinant human albumin-tagged mutant Infestin-4 (rHA-Mut-inf), was generated to address these questions. rHA-Mut-inf displayed potency comparable to the original wild-type HA-Infestin-4 (human FXIIa inhibition constant = 0.07 and 0.12 nM, respectively), with markedly improved selectivity against Factor Xa (FXa) and plasmin. rHA-Mut-inf binds FXIIa, but not FXII zymogen, and competitively inhibits FXIIa protease activity. Its mode of action is hence akin to typical small-molecule inhibitors. Plasma shift and aPTT studies with rHA-Mut-inf demonstrated that calculated enzyme occupancy for FXIIa in achieving a putative aPTT doubling target in human, nonhuman primate, and rabbit is more than 99.0%. The effects of rHA-Mut-inf in carotid arterial thrombosis and microembolic signal (MES) in middle cerebral artery were assessed simultaneously in rabbits. Dose-dependent inhibition was observed for both arterial thrombosis and MES. The ED50 of thrombus formation was 0.17 mg/kg i.v. rHA-Mut-inf for the integrated blood flow and 0.16 mg/kg for thrombus weight; the ED50 for MES was 0.06 mg/kg. Ex vivo aPTT tracked with efficacy. In summary, our findings demonstrated that very high enzyme occupancy will be required for FXIIa active site inhibitors, highlighting the high potency and exquisite selectivity necessary for achieving efficacy in humans. Our MES studies suggest that targeting FXIIa may offer a promising strategy for stroke prevention associated with thromboembolic events.


Assuntos
Coagulação Sanguínea , Fator XIIa/antagonistas & inibidores , Proteínas de Insetos/farmacologia , Embolia Intracraniana , Trombose Intracraniana , Proteínas Recombinantes de Fusão/farmacologia , Albumina Sérica/farmacologia , Animais , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Fibrinolíticos/farmacologia , Embolia Intracraniana/sangue , Embolia Intracraniana/tratamento farmacológico , Trombose Intracraniana/sangue , Trombose Intracraniana/tratamento farmacológico , Modelos Animais , Coelhos , Albumina Sérica Humana
9.
Regul Toxicol Pharmacol ; 85: 79-85, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28185844

RESUMO

Glyphosate is a highly used active compound in agriculturally based pesticides. The literature regarding the toxicity of glyphosate to human cells has been highly inconsistent. We studied the resulting DNA damage and cytotoxicity of various glyphosate concentrations on human cells to evaluate DNA damaging potential. Utilizing human Raji cells, DNA damage was quantified using the comet assay, while cytotoxicity was further analyzed using MTT viability assays. Several glyphosate concentrations were assessed, ranging from 15 mM to 0.1 µM. We found that glyphosate treatment is lethal to Raji cells at concentrations above 10 mM, yet has no cytotoxic effects at concentrations at or below 100 µM. Treatment concentrations of 1 mM and 5 mM induce statistically significant DNA damage to Raji cells following 30-60 min of treatment, however, cells show a slow recovery from initial damage and cell viability is unaffected after 2 h. At these same concentrations, cells treated with additional compound did not recover and maintained high levels of DNA damage. While the cytotoxicity of glyphosate appears to be minimal for physiologically relevant concentrations, the compound has a definitive cytotoxic nature in human cells at high concentrations. Our data also suggests a mammalian metabolic pathway for the degradation of glyphosate may be present.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Relação Dose-Resposta a Droga , Glicina/toxicidade , Humanos , Glifosato
10.
Electrophoresis ; 36(5): 813-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25486911

RESUMO

Thymidine kinase 1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody (Ab) that binds to human TK1. We fabricated PMMA microfluidic devices to test the feasibility of detecting Ab-pTK1 immune complexes as a step toward TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound Abs using 0.5× PBS (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the Ab and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 µL sample volume, and takes just 1 min for separation.


Assuntos
Anticorpos Monoclonais/química , Eletroforese em Microchip/métodos , Imunoensaio/métodos , Proteínas Recombinantes/análise , Timidina Quinase/análise , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Timidina Quinase/química , Timidina Quinase/imunologia , Timidina Quinase/metabolismo
11.
Bioorg Med Chem Lett ; 25(22): 5291-4, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26433449

RESUMO

The design and synthesis of two conformationally restricted oxazabicyclo octane derivatives as GRP119 agonists is described. Derivatives of scaffold C, with syn configuration, have the best overall profiles with respect to solubility and in vivo efficacy. Compound 25a was found to have extremely potent agonistic activity and was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test at a dose of 0.1 mg/kg.


Assuntos
Compostos Azabicíclicos/síntese química , Hipoglicemiantes/síntese química , Pirimidinas/síntese química , Receptores Acoplados a Proteínas G/agonistas , Animais , Compostos Azabicíclicos/farmacologia , Teste de Tolerância a Glucose , Células HEK293 , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Pirimidinas/farmacologia , Solubilidade
12.
Phytother Res ; 29(3): 317-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25339289

RESUMO

The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1ß, TNF-α, and IFN-α/ß) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents.


Assuntos
Adjuvantes Imunológicos/farmacologia , Líquens/química , Polissacarídeos/farmacologia , Animais , Células Dendríticas/efeitos dos fármacos , Humanos , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , Óxido Nítrico/imunologia , Fator de Necrose Tumoral alfa/imunologia
13.
Phytother Res ; 29(1): 100-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25257119

RESUMO

Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Líquens/química , 4-Butirolactona/análogos & derivados , Apoptose/efeitos dos fármacos , Benzofuranos , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular , Humanos , Concentração Inibidora 50 , Lactonas , Linfócitos/efeitos dos fármacos , Estrutura Molecular , Salicilatos , Timidina Quinase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Estados Unidos
14.
Curr Issues Mol Biol ; 16: 23-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23969318

RESUMO

Methods for the rapid detection and differentiation of the Burkholderia pseudomallei complex comprising B. pseudomallei, B. mallei, and B. thailandensis, have been the topic of recent research due to the high degree of phenotypic and genotypic similarities of these species. B. pseudomallei and B. mallei are recognized by the CDC as tier 1 select agents. The high mortality rates of glanders and melioidosis, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Although B. thailandensis is generally avirulent in mammals, this species displays very similar phenotypic characteristics to that of B. pseudomallei. Optimal identification of these species remains problematic, due to the difficulty in developing a sensitive, selective, and accurate assay. The development of PCR technologies has revolutionized diagnostic testing and these detection methods have become popular due to their speed, sensitivity, and accuracy. The purpose of this review is to provide a comprehensive overview and evaluation of the advancements in PCR-based detection and differentiation methodologies for the B. pseudomallei complex, and examine their potential uses in diagnostic and environmental testing.


Assuntos
Armas Biológicas , Burkholderia mallei/isolamento & purificação , Burkholderia pseudomallei/isolamento & purificação , Burkholderia/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Animais , Técnicas de Tipagem Bacteriana , Burkholderia/genética , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Mormo/microbiologia , Mormo/patologia , Cavalos , Humanos , Melioidose/microbiologia , Melioidose/patologia , Reação em Cadeia da Polimerase/normas , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade
15.
Front Immunol ; 15: 1465191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39445021

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.


Assuntos
Doenças Autoimunes , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Doenças Autoimunes/terapia , Doenças Autoimunes/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Animais , Linfócitos T/imunologia
16.
Genes (Basel) ; 15(9)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39336806

RESUMO

BACKGROUND/OBJECTIVES: Systemic lupus erythematosus (lupus) and B-cell lymphoma (lymphoma) co-occur at higher-than-expected rates and primarily depend on B cells for their pathology. These observations implicate shared inflammation-related B cell molecular mechanisms as a potential cause of co-occurrence. METHODS: We consequently implemented a novel Immune Imbalance Transcriptomics (IIT) algorithm and applied IIT to lupus, lymphoma, and healthy B cell RNA-sequencing (RNA-seq) data to find shared and contrasting mechanisms that are potential therapeutic targets. RESULTS: We observed 7143 significantly dysregulated genes in both lupus and lymphoma. Of those genes, we found 5137 to have a significant immune imbalance, defined as a significant dysregulation by both diseases, as analyzed by IIT. Gene Ontology (GO) term and pathway enrichment of the IIT genes yielded immune-related "Neutrophil Degranulation" and "Adaptive Immune System", which validates that the IIT algorithm isolates biologically relevant genes in immunity and inflammation. We found that 344 IIT gene products are known targets for established and/or repurposed drugs. Among our results, we found 48 known and 296 novel lupus targets, along with 151 known and 193 novel lymphoma targets. Known disease drug targets in our IIT results further validate that IIT isolates genes with disease-relevant mechanisms. CONCLUSIONS: We anticipate the IIT algorithm, together with the shared and contrasting gene mechanisms uncovered here, will contribute to the development of immune-related therapeutic options for lupus and lymphoma patients.


Assuntos
Algoritmos , Lúpus Eritematoso Sistêmico , Linfoma de Células B , Transcriptoma , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Transcriptoma/genética , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/tratamento farmacológico , Linfócitos B/imunologia , Linfócitos B/metabolismo , Perfilação da Expressão Gênica/métodos
17.
PLoS One ; 18(11): e0293128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033034

RESUMO

Breast cancer is the most common cancer diagnosis worldwide accounting for 1 out of every 8 cancer diagnoses. The elevated expression of Thymidine Kinase 1 (TK1) is associated with more aggressive tumor grades, including breast cancer. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement in breast cancer has not been identified. Here, we evaluate potential pathogenic effects of elevated TK1 expression by comparing HCC 1806 to HCC 1806 TK1-knockdown cancer cells (L133). Transcriptomic profiles of HCC 1806 and L133 cells showed cell cycle progression, apoptosis, and invasion as potential pathogenic pathways affected by TK1 expression. Subsequent in-vitro studies confirmed differences between HCC 1806 and L133 cells in cell cycle phase progression, cell survival, and cell migration. Expression comparison of several factors involved in these pathogenic pathways between HCC 1806 and L133 cells identified p21 and AKT3 transcripts were significantly affected by TK1 expression. Creation of a protein-protein interaction map of TK1 and the pathogenic factors we evaluated predict that the majority of factors evaluated either directly or indirectly interact with TK1. Our findings argue that TK1 elevation directly increases HCC 1806 cell pathogenicity and is likely occurring by p21- and AKT3-mediated mechanisms to promote cell cycle arrest, cellular migration, and cellular survival.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular/genética , Virulência , Divisão Celular , Timidina Quinase/genética , Timidina Quinase/metabolismo , Movimento Celular/genética
18.
Cells ; 11(22)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429054

RESUMO

Chimeric antigen receptor (CAR) T cells are an exciting advancement in cancer immunotherapy, with striking success in hematological cancers. However, in solid tumors, the unique immunosuppressive elements of the tumor microenvironment (TME) contribute to the failure of CAR T cells. This review discusses the cell populations, cytokine/chemokine profile, and metabolic immunosuppressive elements of the TME. This immunosuppressive TME causes CAR T-cell exhaustion and influences failure of CAR T cells to successfully infiltrate solid tumors. Recent advances in CAR T-cell development, which seek to overcome aspects of the TME immunosuppression, are also reviewed. Novel discoveries overcoming immunosuppressive limitations of the TME may lead to the success of CAR T cells in solid tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Linfócitos T , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias/metabolismo , Neoplasias/metabolismo , Terapia de Imunossupressão
19.
Cancers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35565306

RESUMO

Cytokines are small molecular messengers that have profound effects on cancer development. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and antitumor activities, such as immune activation and suppression, inflammation, cell damage, angiogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often required to drive these cancer-related processes and, therefore, represent an important research area for understanding cancer development and the potential identification of novel therapeutic targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity, indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this review, we discuss some major cancer-related processes and their relationship with several cytokines.

20.
PLoS One ; 17(3): e0264822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239730

RESUMO

Thymidine Kinase 1 (TK1) is primarily known as a cancer biomarker with good prognostic capabilities for both hematological and solid malignancies. However, recent studies targeting TK1 at protein and mRNA levels have shown that TK1 may be useful as a therapeutic target. In order to examine the use of TK1 as a therapeutic target, it is necessary to develop therapeutics specific for it. Single domain antibodies (sdAbs), represent an exciting approach for the development of immunotherapeutics due to their cost-effective production and higher tumor penetration than conventional antibodies. In this study, we isolated sdAb fragments specific to human TK1 from a human sdAb library. A total of 400 sdAbs were screened through 5 rounds of selection by monoclonal phage ELISA. The most sensitive sdAb fragments were selected as candidates for preclinical testing. The sdAb fragments showed specificity for human TK1 in phage ELISA, Western blot analysis and had an estimated limit of detection of 3.9 ng/ml for the antibody fragments 4-H-TK1_A1 and 4-H-TK1_D1. The antibody fragments were successfully expressed and used for detection of membrane associated TK1 (mTK1) through flow cytometry on cancer cells [lung (~95%), colon (~87%), breast (~53%)] and healthy human mononuclear cells (MNC). The most sensitive antibody fragments, 4-H-TK1_A1 and 4-H-TK1_D1 were fused to an engineered IgG1 Fc fragment. When added to cancer cells expressing mTK1 co-cultured with human MNCs, the anti-TK1-sdAb-IgG1_A1 and D1 were able to elicit a significant antibody-dependent cell-mediated cytotoxicity (ADCC) response against lung cancer cells compared to isotype controls (P<0.0267 and P<0.0265, respectively). To our knowledge this is the first time that the isolation and evaluation of human anti-TK1 single domain antibodies using phage display technology has been reported. The antibody fragments isolated here may represent a valuable resource for the detection and the targeting of TK1 on tumor cells.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/genética , Neoplasias/terapia , Timidina Quinase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa