Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neuroinflammation ; 15(1): 142, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29759062

RESUMO

BACKGROUND: Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. METHODS: Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. RESULTS: Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. CONCLUSIONS: Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults.


Assuntos
Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Permeabilidade Capilar/fisiologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Permeabilidade Capilar/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hidrólise/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo
2.
Brain ; 139(Pt 2): 563-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26493635

RESUMO

Prominent cerebral amyloid angiopathy is often observed in the brains of elderly individuals and is almost universally found in patients with Alzheimer's disease. Cerebral amyloid angiopathy is characterized by accumulation of the shorter amyloid-ß isoform(s) (predominantly amyloid-ß40) in the walls of leptomeningeal and cortical arterioles and is likely a contributory factor to vascular dysfunction leading to stroke and dementia in the elderly. We used transgenic mice with prominent cerebral amyloid angiopathy to investigate the ability of ponezumab, an anti-amyloid-ß40 selective antibody, to attenuate amyloid-ß accrual in cerebral vessels and to acutely restore vascular reactivity. Chronic administration of ponezumab to transgenic mice led to a significant reduction in amyloid and amyloid-ß accumulation both in leptomeningeal and brain vessels when measured by intravital multiphoton imaging and immunohistochemistry. By enriching for cerebral vascular elements, we also measured a significant reduction in the levels of soluble amyloid-ß biochemically. We hypothesized that the reduction in vascular amyloid-ß40 after ponezumab administration may reflect the ability of ponezumab to mobilize an interstitial fluid pool of amyloid-ß40 in brain. Acutely, ponezumab triggered a significant and transient increase in interstitial fluid amyloid-ß40 levels in old plaque-bearing transgenic mice but not in young animals. We also measured a beneficial effect on vascular reactivity following acute administration of ponezumab, even in vessels where there was a severe cerebral amyloid angiopathy burden. Taken together, the beneficial effects ponezumab administration has on reducing the rate of cerebral amyloid angiopathy deposition and restoring cerebral vascular health favours a mechanism that involves rapid removal and/or neutralization of amyloid-ß species that may otherwise be detrimental to normal vessel function.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Humanizados/administração & dosagem , Angiopatia Amiloide Cerebral/tratamento farmacológico , Angiopatia Amiloide Cerebral/metabolismo , Endotélio Vascular/metabolismo , Imunização Passiva/métodos , Peptídeos beta-Amiloides/imunologia , Animais , Angiopatia Amiloide Cerebral/imunologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/tratamento farmacológico , Placa Amiloide/imunologia , Placa Amiloide/metabolismo
3.
J Neurosci Methods ; 204(1): 179-188, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22019329

RESUMO

Advances in imaging technology have enabled automated approaches for quantitative image analysis. In this study, a high content object based image analysis method was developed for quantification of ß-amyloid (Aß) plaques in postmortem brains of Alzheimer's disease (AD) subjects and in transgenic mice over overexpressing Aß. Digital images acquired from immunohistochemically stained sections of the superior frontal gyrus were analyzed for Aß plaque burden using a Definiens object-based segmentation approach. Blinded evaluation of Aß stained sections from AD and aged matched human subjects accurately identified AD cases with one exception. Brains from transgenic mice overexpressing Aß (PS1APP mice) were also evaluated by our Definiens object based image analysis approach. We observed an age-dependent increase in the amount of Aß plaque load that we quantified in both the hippocampus and cortex. From the contralateral hemisphere, we measured the amount of Aß in brain homogenates biochemically and observed a significant correlation between our biochemical measurements and those that we measured by our object based Definiens system in the hippocampus. Assessment of Aß plaque load in PS1APP mice using a manual segmentation technique (Image-Pro Plus) confirmed the results of our object-based image analysis approach. Image acquisition and analysis of 32 stained human slides and 100 mouse slides were executed in 8 h and 22 h, respectively supporting the relatively high throughput features of the Definiens platform. The data show that digital imaging combined with object based image analysis is a reliable and efficient approach to quantifying Aß plaques in human and mouse brain.


Assuntos
Algoritmos , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Reconhecimento Automatizado de Padrão/métodos , Placa Amiloide/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Camundongos , Camundongos Transgênicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Mol Autism ; 2(1): 7, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575186

RESUMO

BACKGROUND: The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors. METHODS: Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM). RESULTS: In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and NeuroD immunoreactive cells in the subgranular zone of the dentate gyrus, and a marked reduction in the number of 5-bromo-2'-deoxyuridine (BrdU) positive progenitors. Furthermore, a significant and profound reduction in BDNF mRNA was seen in the BTBR dentate gyrus. No significant differences were seen in the expression of AchE, mossy fiber synapses or immunoreactivities of microtubule-associated protein MAP2, parvalbumin and glutamate decarboxylase GAD65 or GAD67 isoforms. CONCLUSIONS: We documented modest and selective alterations in glia, neurons and synapses in BTBR forebrain, along with reduced neurogenesis in the adult hippocampus. Of all markers examined, the most distinctive changes were seen in the neurodevelopmental proteins NG2, PSA-NCAM, NeuroD and DCX. Our results are consistent with aberrant development of the nervous system in BTBR mice, and may reveal novel substrates to link callosal abnormalities and autistic behaviors. The changes that we observed in the BTBR mice suggest potential novel therapeutic strategies for intervention in autism spectrum disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa