Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Acta Neuropathol ; 141(5): 725-754, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33694021

RESUMO

The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson's-linked neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Dopamina/metabolismo , Mesencéfalo/metabolismo , Degeneração Neural/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Degeneração Neural/patologia , Oxirredução , Adulto Jovem
2.
J Neurosci ; 35(16): 6265-76, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904780

RESUMO

Alzheimer's disease (AD) and familial Danish dementia (FDD) are degenerative neurological diseases characterized by amyloid pathology. Normal human sera contain IgG antibodies that specifically bind diverse preamyloid and amyloid proteins and have shown therapeutic potential in vitro and in vivo. We cloned one of these antibodies, 3H3, from memory B cells of a healthy individual using a hybridoma method. 3H3 is an affinity-matured IgG that binds a pan-amyloid epitope, recognizing both Aß and λ Ig light chain (LC) amyloids, which are associated with AD and primary amyloidosis, respectively. The pan-amyloid-binding properties of 3H3 were demonstrated using ELISA, immunohistochemical studies, and competition binding assays. Functional studies showed that 3H3 inhibits both Aß and LC amyloid formation in vitro and abrogates disruption of hippocampal synaptic plasticity by AD-patient-derived soluble Aß in vivo. A 3H3 single-chain variable fragment (scFv) retained the binding specificity of the 3H3 IgG and, when expressed in the brains of transgenic mice using an adeno-associated virus (AAV) vector, decreased parenchymal Aß amyloid deposition in TgCRND8 mice and ADan (Danish Amyloid) cerebral amyloid angiopathy in the mouse model of FDD. These data indicate that naturally occurring human IgGs can recognize a conformational, amyloid-specific epitope and have potent anti-amyloid activities, providing a rationale to test their potential as antibody therapeutics for diverse neurological and other amyloid diseases.


Assuntos
Peptídeos beta-Amiloides/imunologia , Amiloide/metabolismo , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Amiloide/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Encéfalo/metabolismo , Catarata/imunologia , Ataxia Cerebelar/imunologia , Angiopatia Amiloide Cerebral/imunologia , Surdez/imunologia , Demência/imunologia , Humanos , Imunoglobulina G/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Ratos
3.
J Biol Chem ; 290(16): 10229-41, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25724648

RESUMO

Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid ß (Aß)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aß C terminus noncovalently and hydrolyzed Aß rapidly, with no reactivity to the Aß precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aß dipeptide unit. The catabody dissolved preformed Aß aggregates and inhibited Aß aggregation more potently than an Aß-binding IgG. Intravenous catabody treatment reduced brain Aß deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aß hydrolysis appears to be an innate immune function that could be applied for therapeutic Aß removal.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Anticorpos Catalíticos/metabolismo , Encéfalo/metabolismo , Anticorpos de Cadeia Única/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Animais , Anticorpos Catalíticos/química , Anticorpos Catalíticos/genética , Encéfalo/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Expressão Gênica , Células HEK293 , Humanos , Hidrólise , Imunidade Inata , Camundongos , Fragmentos de Peptídeos/química , Engenharia de Proteínas , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
4.
J Biol Chem ; 289(19): 13243-58, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24648510

RESUMO

Peptide bond-hydrolyzing catalytic antibodies (catabodies) could degrade toxic proteins, but acquired immunity principles have not provided evidence for beneficial catabodies. Transthyretin (TTR) forms misfolded ß-sheet aggregates responsible for age-associated amyloidosis. We describe nucleophilic catabodies from healthy humans without amyloidosis that degraded misfolded TTR (misTTR) without reactivity to the physiological tetrameric TTR (phyTTR). IgM class B cell receptors specifically recognized the electrophilic analog of misTTR but not phyTTR. IgM but not IgG class antibodies hydrolyzed the particulate and soluble misTTR species. No misTTR-IgM binding was detected. The IgMs accounted for essentially all of the misTTR hydrolytic activity of unfractionated human serum. The IgMs did not degrade non-amyloidogenic, non-superantigenic proteins. Individual monoclonal IgMs (mIgMs) expressed variable misTTR hydrolytic rates and differing oligoreactivity directed to amyloid ß peptide and microbial superantigen proteins. A subset of the mIgMs was monoreactive for misTTR. Excess misTTR was dissolved by a hydrolytic mIgM. The studies reveal a novel antibody property, the innate ability of IgMs to selectively degrade and dissolve toxic misTTR species as a first line immune function.


Assuntos
Amiloide/metabolismo , Anticorpos Catalíticos/metabolismo , Imunoglobulina M/metabolismo , Pré-Albumina/metabolismo , Proteólise , Adulto , Amiloide/imunologia , Anticorpos Catalíticos/imunologia , Especificidade de Anticorpos/imunologia , Feminino , Humanos , Imunoglobulina M/imunologia , Masculino , Pré-Albumina/imunologia
5.
Neurobiol Dis ; 82: 372-384, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26215784

RESUMO

Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD). A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid ß-protein (Aß), self-associates to form soluble assemblies loosely referred to as "oligomers" and that these are primary mediators of synaptic dysfunction. As such, Aß, and specifically Aß oligomers, are targets for disease modifying therapies. Currently, the most advanced experimental treatment for AD relies on the use of anti-Aß antibodies. In this study, we tested the ability of the monomer-preferring antibody, m266 and a novel aggregate-preferring antibody, 1C22, to attenuate spatial reference memory impairments in J20 mice. Chronic treatment with m266 resulted in a ~70-fold increase in Aß detected in the bloodstream, and a ~50% increase in water-soluble brain Aß--and in both cases Aß was bound to m266. In contrast, 1C22 increased the levels of free Aß in the bloodstream, and bound to amyloid deposits in J20 brain. However, neither 1C22 nor m266 attenuated the cognitive deficits evident in 12month old J20 mice. Moreover, both antibodies failed to alter the levels of soluble Aß oligomers in J20 brain. These results suggest that Aß oligomers may mediate the behavioral deficits seen in J20 mice and highlight the need for the development of aggregate-preferring antibodies that can reach the brain in sufficient levels to neutralize bioactive Aß oligomers. Aside from the lack of positive effect of m266 and 1C22 on cognition, a substantial number of deaths occurred in m266- and 1C22-immunized J20 mice. These fatalities were specific to anti-Aß antibodies and to the J20 mouse line since treatment of wild type or PDAPP mice with these antibodies did not cause any deaths. These and other recent results indicate that J20 mice are particularly susceptible to targeting of the APP/Aß/tau axis. Notwithstanding the specificity of fatalities for J20 mice, it is worrying that the murine precursor (m266) of a lead experimental therapeutic, Solanezumab, did not engage with putatively pathogenic Aß oligomers.


Assuntos
Peptídeos beta-Amiloides/imunologia , Anticorpos/administração & dosagem , Encéfalo/metabolismo , Imunização Passiva , Transtornos da Memória/imunologia , Transtornos da Memória/terapia , Nootrópicos/administração & dosagem , Peptídeos beta-Amiloides/sangue , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Infusões Parenterais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia
6.
Biochem J ; 461(3): 413-26, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24785004

RESUMO

Dimers of Aß (amyloid ß-protein) are believed to play an important role in Alzheimer's disease. In the absence of sufficient brain-derived dimers, we studied one of the only possible dimers that could be produced in vivo, [Aß](DiY) (dityrosine cross-linked Aß). For comparison, we used the Aß monomer and a design dimer cross-linked by replacement of Ser²6 with cystine [AßS26C]2. We showed that similar to monomers, unaggregated dimers lack appreciable structure and fail to alter long-term potentiation. Importantly, dimers exhibit subtly different structural propensities from monomers and each other, and can self-associate to form larger assemblies. Although [Aß](DiY) and [AßS26C]2 have distinct aggregation pathways, they both populate bioactive soluble assemblies for longer durations than Aß monomers. Our results indicate that the link between Aß dimers and Alzheimer's disease results from the ability of dimers to further assemble and form synaptotoxic assemblies that persist for long periods of time.


Assuntos
Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/toxicidade , Cerebelo/efeitos dos fármacos , Proteínas do Tecido Nervoso/toxicidade , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Sinapses/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Substituição de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Cerebelo/metabolismo , Dimerização , Potenciais Evocados/efeitos dos fármacos , Humanos , Injeções Intraventriculares , Cinética , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Multimerização Proteica , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Solubilidade , Sinapses/metabolismo
7.
Cancers (Basel) ; 16(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39199551

RESUMO

Omnipresent suppressive myeloid populations in the tumor microenvironment limit the efficacy of T-cell-directed immunotherapies, become more inhibitory after administration of T-cell checkpoint inhibitors, and are overall associated with worse survival of cancer patients. In early clinical trials, positive outcomes have been demonstrated for therapies aimed at repolarizing suppressive myeloid populations in the tumor microenvironment. We have previously described the key role of P-selectin glycoprotein ligand-1 (PSGL-1) in maintaining an inhibitory state of tumor-associated macrophages (TAMs), most of which express high levels of PSGL-1. Here we describe a novel, first-in-class humanized high-affinity monoclonal antibody VTX-0811 that repolarizes human macrophages from an M2-suppressive phenotype towards an M1 inflammatory phenotype, similar to siRNA-mediated knockdown of PSGL-1. VTX-0811 binds to PSGL-1 of human and cynomolgus macaque origins without inhibiting PSGL-1 interaction with P- and L-Selectins or VISTA. In multi-cellular assays and in patient-derived human tumor cultures, VTX-0811 leads to the induction of pro-inflammatory mediators. RNAseq data from VTX-0811 treated ex vivo tumor cultures and M2c macrophages show similar pathways being modulated, indicating that the mechanism of action translates from isolated macrophages to tumors. A chimeric version of VTX-0811, consisting of the parental murine antibody in a human IgG4 backbone, inhibits tumor growth in a humanized mouse model of cancer. VTX-0811 is exceptionally well tolerated in NHP toxicology assessment and is heading into clinical evaluation after successful IND clearance.

8.
Cancer Res Commun ; 3(10): 2182-2194, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819238

RESUMO

The immune suppressive microenvironment is a major culprit for difficult-to-treat solid cancers. Particularly, inhibitory tumor-associated macrophages (TAM) define the resistant nature of the tumor milieu. To define tumor-enabling mechanisms of TAMs, we analyzed molecular clinical datasets correlating cell surface receptors with the TAM infiltrate. Though P-selectin glycoprotein ligand-1 (PSGL-1) is found on other immune cells and functions as an adhesion molecule, PSGL-1 is highly expressed on TAMs across multiple tumor types. siRNA-mediated knockdown and antibody-mediated inhibition revealed a role for PSGL-1 in maintaining an immune suppressed macrophage state. PSGL-1 knockdown or inhibition enhanced proinflammatory mediator release across assays and donors in vitro. In several syngeneic mouse models, PSGL-1 blockade alone and in combination with PD-1 blockade reduced tumor growth. Using a humanized tumor model, we observed the proinflammatory TAM switch following treatment with an anti-PSGL-1 antibody. In ex vivo patient-derived tumor cultures, a PSGL-1 blocking antibody increased expression of macrophage-derived proinflammatory cytokines, as well as IFNγ, indicative of T-cell activation. Our data demonstrate that PSGL-1 blockade reprograms TAMs, offering a new therapeutic avenue to patients not responding to T-cell immunotherapies, as well as patients with tumors devoid of T cells. SIGNIFICANCE: This work is a significant and actionable advance, as it offers a novel approach to treating patients with cancer who do not respond to T-cell checkpoint inhibitors, as well as to patients with tumors lacking T-cell infiltration. We expect that this mechanism will be applicable in multiple indications characterized by infiltration of TAMs.


Assuntos
Glicoproteínas de Membrana , Macrófagos Associados a Tumor , Camundongos , Animais , Humanos , Macrófagos Associados a Tumor/metabolismo , Glicoproteínas de Membrana/genética , Citocinas , Moléculas de Adesão Celular
9.
J Neurosci ; 30(43): 14411-9, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980598

RESUMO

Nonfibrillar, water-soluble low-molecular weight assemblies of the amyloid ß-protein (Aß) are believed to play an important role in Alzheimer's disease (AD). Aqueous extracts of human brain contain Aß assemblies that migrate on SDS-polyacrylamide gels and elute from size exclusion as dimers (∼8 kDa) and can block long-term potentiation and impair memory consolidation in the rat. Such species are detected specifically and sensitively in extracts of Alzheimer brain suggesting that SDS-stable dimers may be the basic building blocks of AD-associated synaptotoxic assemblies. Consequently, understanding the structure and properties of Aß dimers is of great interest. In the absence of sufficient brain-derived dimer to facilitate biophysical analysis, we generated synthetic dimers designed to mimic the natural species. For this, Aß(1-40) containing cysteine in place of serine 26 was used to produce disulphide cross-linked dimer, (AßS26C)2. Such dimers had no detectable secondary structure, produced an analytical ultracentrifugation profile consistent for an ∼8.6 kDa protein, and had no effect on hippocampal long-term potentiation (LTP). However, (AßS26C)2 aggregated more rapidly than either AßS26C or wild-type monomers and formed parastable ß-sheet rich, thioflavin T-positive, protofibril-like assemblies. Whereas wild-type Aß aggregated to form typical amyloid fibrils, the protofibril-like structures formed by (AßS26C)2 persisted for prolonged periods and potently inhibited LTP in mouse hippocampus. These data support the idea that Aß dimers may stabilize the formation of fibril intermediates by a process distinct from that available to Aß monomer and that higher molecular weight prefibrillar assemblies are the proximate mediators of Aß toxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Emaranhados Neurofibrilares/patologia , Neurotoxinas/toxicidade , Sinapses/patologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Animais , Dicroísmo Circular , Reagentes de Ligações Cruzadas , Dimerização , Sinergismo Farmacológico , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Dados de Sequência Molecular , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurotoxinas/química , Conformação Proteica , Espalhamento de Radiação , Sinapses/efeitos dos fármacos , Ultracentrifugação
10.
J Biol Chem ; 285(2): 1066-74, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19889627

RESUMO

We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Abeta, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig gamma heavy chains. A gamma(1) heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Abeta monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig gamma heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Abeta oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig gamma heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Cadeias gama de Imunoglobulina/química , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Cadeias gama de Imunoglobulina/genética , Cadeias gama de Imunoglobulina/metabolismo , Cadeias gama de Imunoglobulina/farmacologia , Camundongos
11.
J Neurochem ; 119(1): 189-201, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21781116

RESUMO

Diverse lines of evidence indicate that pre-fibrillar, diffusible assemblies of the amyloid ß-protein (Aß) play an important role in Alzheimer's disease pathogenesis. Although the precise molecular identity of these soluble toxins remains unsettled, recent experiments suggest that sodium dodecyl sulfate (SDS)-stable Aß dimers may be the basic building blocks of Alzheimer's disease-associated synaptotoxic assemblies and as such present an attractive target for therapeutic intervention. In the absence of sufficient amounts of highly pure cerebral Aß dimers, we have used synthetic disulfide cross-linked dimers (free of Aß monomer or fibrils) to generate conformation-specific monoclonal antibodies. These dimers aggregate to form kinetically trapped protofibrils, but do not readily form fibrils. We identified two antibodies, 3C6 and 4B5, which preferentially bind assemblies formed from covalent Aß dimers, but do not bind to Aß monomer, amyloid precursor protein, or aggregates formed by other amyloidogenic proteins. Monoclonal antibody 3C6, but not an IgM isotype-matched control antibody, ameliorated the plasticity-disrupting effects of Aß extracted from the aqueous phase of Alzheimer's disease brain, thus suggesting that 3C6 targets pathogenically relevant Aß assemblies. These data prove the usefulness of covalent dimers and their assemblies as immunogens and recommend further investigation of the therapeutic and diagnostic utility of monoclonal antibodies raised to such assemblies.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Western Blotting , Química Encefálica , Reagentes de Ligações Cruzadas , Eletroforese em Gel de Poliacrilamida , Fenômenos Eletrofisiológicos , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina M/imunologia , Imunoprecipitação , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Ligação Proteica , Extratos de Tecidos/química
12.
J Clin Immunol ; 30 Suppl 1: S37-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20405179

RESUMO

INTRODUCTION: We have previously shown that a subpopulation of naturally occurring human IgGs has therapeutic potential for the amyloid-associated disorders. These molecules cross-react with conformational epitopes on amyloidogenic assemblies, including amyloid beta (Abeta) protein fibrils that are a pathological hallmark of Alzheimer's disease. MATERIALS AND METHODS: Using our europium-linked immunosorbant assay, we established that approximately 95% of 260 screened donor plasma samples had amyloid fibril-reactive IgGs and Abeta conformer-reactive IgGs with minimal binding to Abeta monomers. Anti-amyloidogenic reactivity was diverse and attributed to Abeta targeting multiple fibril-related binding sites and/or variations in multidentate binding. RESULTS AND DISCUSSION: There was no correlation between anti-fibril and anti-oligomer reactivity and donor age (19 to 60 years old) or gender. These findings demonstrate the inherent but diverse anti-amyloidogenic activity of natural IgGs contained in normal plasma. CONCLUSION: Our studies provide support for investigating the clinical significance and physiological function of this novel class of antibodies.


Assuntos
Peptídeos beta-Amiloides/imunologia , Imunoglobulina G/imunologia , Fragmentos de Peptídeos/imunologia , Adulto , Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Especificidade de Anticorpos/imunologia , Reações Antígeno-Anticorpo , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Feminino , Humanos , Imunidade Inata , Imunoglobulina G/sangue , Imunoglobulinas Intravenosas/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Alzheimers Res Ther ; 12(1): 12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931873

RESUMO

BACKGROUND: Pyroglutamate-3 Aß (pGlu-3 Aß) is an N-terminally truncated and post-translationally modified Aß species found in Alzheimer's disease (AD) brain. Its increased peptide aggregation propensity and toxicity make it an attractive emerging treatment strategy for AD. We address the question of how the effector function of an anti-pGlu-3 Aß antibody influences the efficacy of immunotherapy in mouse models with AD-like pathology. METHODS: We compared two different immunoglobulin (Ig) isotypes of the same murine anti-pGlu-3 Aß mAb (07/1 IgG1 and 07/2a IgG2a) and a general N-terminal Aß mAb (3A1 IgG1) for their ability to clear Aß and protect cognition in a therapeutic passive immunotherapy study in aged, plaque-rich APPSWE/PS1ΔE9 transgenic (Tg) mice. We also compared the ability of these antibodies and a CDC-mutant form of 07/2a (07/2a-k), engineered to avoid complement activation, to clear Aß in an ex vivo phagocytosis assay and following treatment in APPSLxhQC double Tg mice, and to activate microglia using longitudinal microPET imaging with TSPO-specific 18F-GE180 tracer following a single bolus antibody injection in young and old Tg mice. RESULTS: We demonstrated significant cognitive improvement, better plaque clearance, and more plaque-associated microglia in the absence of microhemorrhage in aged APPSWE/PS1ΔE9 Tg mice treated with 07/2a, but not 07/1 or 3A1, compared to PBS in our first in vivo study. All mAbs cleared plaques in an ex vivo assay, although 07/2a promoted the highest phagocytic activity. Compared with 07/2a, 07/2a-k showed slightly reduced affinity to Fcγ receptors CD32 and CD64, although the two antibodies had similar binding affinities to pGlu-3 Aß. Treatment of APPSLxhQC mice with 07/2a and 07/2a-k mAbs in our second in vivo study showed significant plaque-lowering with both mAbs. Longitudinal 18F-GE180 microPET imaging revealed different temporal patterns of microglial activation for 3A1, 07/1, and 07/2a mAbs and no difference between 07/2a-k and PBS-treated Tg mice. CONCLUSION: Our results suggest that attenuation of behavioral deficits and clearance of amyloid is associated with strong effector function of the anti-pGlu-3 Aß mAb in a therapeutic treatment paradigm. We present evidence that antibody engineering to reduce CDC-mediated complement binding facilitates phagocytosis of plaques without inducing neuroinflammation in vivo. Hence, the results provide implications for tailoring effector function of humanized antibodies for clinical development.


Assuntos
Doença de Alzheimer , Vacinas contra Alzheimer/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Neuroglia/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Imunização Passiva/métodos , Imunoglobulina G , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Ácido Pirrolidonocarboxílico/metabolismo
14.
Biochemistry ; 47(47): 12254-6, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-18956886

RESUMO

Two conformers of aggregated Abeta, i.e., fibrils and oligomers, have been deemed important in the pathogenesis of Alzheimer's disease. We now report that intravenous immune globulin (IVIG) derived from pools of human plasma contains IgGs that recognize conformational epitopes present on fibrils and oligomers, but not their soluble monomeric precursor. We have used affinity chromatography to isolate these antibodies and have shown that they cross-reacted with comparable nanomolar avidity with both types of Abeta aggregates; notably, binding was not inhibited by soluble Abeta monomers. Our studies provide further support for investigating the therapeutic use of IVIG in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Multimerização Proteica , Peptídeos beta-Amiloides/metabolismo , Especificidade de Anticorpos , Reações Cruzadas/imunologia , Humanos , Imunoglobulinas Intravenosas/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Estrutura Quaternária de Proteína
15.
Nat Commun ; 9(1): 2676, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992960

RESUMO

Although the amyloid ß-protein (Aß) is believed to play an initiating role in Alzheimer's disease (AD), the molecular characteristics of the key pathogenic Aß forms are not well understood. As a result, it has proved difficult to identify optimal agents that target disease-relevant forms of Aß. Here, we combined the use of Aß-rich aqueous extracts of brain samples from AD patients as a source of human Aß and live-cell imaging of iPSC-derived human neurons to develop a bioassay capable of quantifying the relative protective effects of multiple anti-Aß antibodies. We report the characterization of 1C22, an aggregate-preferring murine anti-Aß antibody, which better protects against forms of Aß oligomers that are toxic to neurites than do the murine precursors of the clinical immunotherapeutics, bapineuzumab and solanezumab. These results suggest further examination of 1C22 is warranted, and that this bioassay maybe useful as a primary screen to identify yet more potent anti-Aß therapeutics.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais/imunologia , Encéfalo/imunologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo
16.
Methods Enzymol ; 413: 34-74, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17046390

RESUMO

Nonnative protein aggregation has been classically treated as an amorphous process occurring by colloidal coagulation kinetics and proceeding to an essentially irreversible endpoint often ascribed to a chaotic tangle of unfolded chains. However, some nonnative aggregates, particularly amyloid fibrils, exhibit ordered structures that appear to assemble according to ordered mechanisms. Some of these fibrils, as illustrated here with the Alzheimer's plaque peptide amyloid beta, assemble to an endpoint that is a dynamic equilibrium between monomers and fibrils exhibiting a characteristic equilibrium constant with an associated free energy of formation. Some fibrils, as illustrated here with the polyglutamine repeat sequences associated with Huntington's disease, assemble via highly regular mechanisms exhibiting nucleated growth polymerization kinetics. Here, we describe a series of linked methods for quantitative analysis of such aggregation kinetics and thermodynamics, focusing on a robust high-performance liquid chromatography (HPLC)-based sedimentation assay. An integrated group of protocols is provided for peptide disaggregation, setting up the HPLC sedimentation assay, the preparation of fibril seed stocks and determination of the average functional molecular weight of the fibrils, elongation and nucleation kinetics analysis, and the determination of the critical concentration describing the thermodynamic endpoint of fibril elongation.


Assuntos
Amiloide/química , Cromatografia Líquida de Alta Pressão/métodos , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/química , Cinética , Elongação Traducional da Cadeia Peptídica , Fragmentos de Peptídeos/química , Peptídeos/química , Propanóis/química , Estrutura Quaternária de Proteína , Temperatura , Termodinâmica , Ácido Trifluoracético/química
17.
Amyloid ; 12(3): 149-56, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16194869

RESUMO

The mouse model of experimentally induced systemic AA amyloidosis is long established, well validated, and closely analogous to the human form of this disease. However, the induction of amyloid by experimental inflammation is unpredictable, inconsistent, and difficult to modulate. We have previously shown that murine AA amyloid deposits can be imaged using iodine-123 labeled SAP scintigraphy and report here substantial refinements in both the imaging technology and the mouse model itself. In this regard, we have generated a novel prototype of AA amyloid in which mice expressing the human interleukin 6 gene, when given amyloid enhancing factor, develop extensive and progressive systemic AA deposition without an inflammatory stimulus, i.e., a transgenic rapidly inducible amyloid disease (TRIAD) mouse. Additionally, we have constructed high-resolution micro single photon emission computed tomography (SPECT)/computed tomography (CT) instrumentation that provides images revealing the precise anatomic location of amyloid deposits labeled by radioiodinated serum amyloid P component (SAP). Based on reconstructed microSPECT/CT images, as well as autoradiographic, isotope biodistribution, and quantitative histochemical analyses, the (125)I-labeled SAP tracer bound specifically to hepatic and splenic amyloid in the TRIAD animals. The ability to discern radiographically the extent of amyloid burden in the TRIAD model provides a unique opportunity to evaluate the therapeutic efficacy of pharmacologic compounds designed to inhibit fibril formation or effect amyloid resolution.


Assuntos
Amiloide/metabolismo , Amiloidose/diagnóstico por imagem , Amiloidose/metabolismo , Modelos Animais de Doenças , Amiloidose/diagnóstico , Amiloidose/genética , Animais , Autorradiografia , Humanos , Interleucina-6/genética , Radioisótopos do Iodo/metabolismo , Metalotioneína/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Radiografia , Tomografia Computadorizada de Emissão de Fóton Único
18.
PLoS One ; 10(9): e0137344, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367058

RESUMO

Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs) have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1) pAb aggregates have greater activity than monomers (HMW species > dimers > monomers), 2) pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR) interactions of F(ab) regions, and 3) pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg), had up to ~200- and ~7-fold stronger binding to aggregates of Aß and transthyretin (TTR) than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aß- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR) component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aß and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs.


Assuntos
Amiloide/metabolismo , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Agregação Patológica de Proteínas/metabolismo , Amiloide/imunologia , Animais , Humanos , Camundongos , Ligação Proteica
19.
Neurobiol Aging ; 36(3): 1316-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619661

RESUMO

The amyloid ß (Aß)-protein and microtubule-associated protein, tau, are the major components of the amyloid plaques and neurofibrillary tangles that typify Alzheimer's disease (AD) pathology. As such both Aß and tau have long been proposed as therapeutic targets. Immunotherapy, particularly targeting Aß, is currently the most advanced clinical strategy for treating AD. However, several Aß-directed clinical trials have failed, and there is concern that targeting this protein may not be useful. In contrast, there is a growing optimism that tau immunotherapy may prove more efficacious. Here, for the first time, we studied the effects of chronic administration of an anti-tau monoclonal antibody (5E2) in amyloid precursor protein transgenic mice. For our animal model, we chose the J20 mouse line because prior studies had shown that the cognitive deficits in these mice require expression of tau. Despite the fact that 5E2 was present and active in the brains of immunized mice and that this antibody appeared to engage with extracellular tau, 5E2-treatment did not recover age-dependent spatial reference memory deficits. These results indicate that the memory impairment evident in J20 mice is unlikely to be mediated by a form of extracellular tau recognized by 5E2. In addition to the lack of positive effect of anti-tau immunotherapy, we also documented a significant increase in mortality among J20 mice that received 5E2. Because both the J20 mice used here and tau transgenic mice used in prior tau immunotherapy trials are imperfect models of AD our results recommend extensive preclinical testing of anti-tau antibody-based therapies using multiple mouse models and a variety of different anti-tau antibodies.


Assuntos
Doença de Alzheimer/terapia , Anticorpos Monoclonais/uso terapêutico , Imunoterapia , Proteínas tau/imunologia , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Memória , Camundongos Transgênicos , Falha de Tratamento
20.
Neurobiol Aging ; 36(12): 3187-3199, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453001

RESUMO

Pyroglutamate-3 amyloid-beta (pGlu-3 Aß) is an N-terminally truncated Aß isoform likely playing a decisive role in Alzheimer's disease pathogenesis. Here, we describe a prophylactic passive immunization study in APPswe/PS1ΔE9 mice using a novel pGlu-3 Aß immunoglobulin G1 (IgG1) monoclonal antibody, 07/1 (150 and 500 µg, intraperitoneal, weekly) and compare its efficacy with a general Aß IgG1 monoclonal antibody, 3A1 (200 µg, intraperitoneal, weekly) as a positive control. After 28 weeks of treatment, plaque burden was reduced and cognitive performance of 07/1-immunized Tg mice, especially at the higher dose, was normalized to wild-type levels in 2 hippocampal-dependent tests and partially spared compared with phosphate-buffered saline-treated Tg mice. Mice that received 3A1 had reduced plaque burden but showed no cognitive benefit. In contrast with 3A1, treatment with 07/1 did not increase the concentration of Aß in plasma, suggesting different modes of Aß plaque clearance. In conclusion, early selective targeting of pGlu-3 Aß by immunotherapy may be effective in lowering cerebral Aß plaque burden and preventing cognitive decline in the clinical setting. Targeting this pathologically modified form of Aß thereby is unlikely to interfere with potential physiologic function(s) of Aß that have been proposed.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Vacinas contra Alzheimer/administração & dosagem , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais/administração & dosagem , Transtornos Cognitivos/prevenção & controle , Cognição , Imunização Passiva , Placa Amiloide/metabolismo , Ácido Pirrolidonocarboxílico/imunologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Encéfalo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa