Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(11): 1706-1713, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619286

RESUMO

Mucosal-Associated Invariant T (MAIT) cells are a population of innate T cells that play a critical role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells can rapidly respond via both TCR-dependent and -independent mechanisms, resulting in robust cytokine production. The metabolic and nutritional requirements for optimal MAIT cell effector responses are still emerging. Iron is an important micronutrient and is essential for cellular fitness, in particular cellular metabolism. Iron is also critical for many pathogenic microbes, including those that activate MAIT cells. However, iron has not been investigated with respect to MAIT cell metabolic or functional responses. In this study, we show that human MAIT cells require exogenous iron, transported via CD71 for optimal metabolic activity in MAIT cells, including their production of ATP. We demonstrate that restricting iron availability by either chelating environmental iron or blocking CD71 on MAIT cells results in impaired cytokine production and proliferation. These data collectively highlight the importance of a CD71-iron axis for human MAIT cell metabolism and functionality, an axis that may have implications in conditions where iron availability is limited.


Assuntos
Antígenos CD , Citocinas , Ferro , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa , Receptores da Transferrina , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Receptores da Transferrina/imunologia , Antígenos CD/metabolismo , Antígenos CD/imunologia , Ativação Linfocitária/imunologia , Citocinas/metabolismo , Proliferação de Células , Células Cultivadas , Trifosfato de Adenosina/metabolismo
2.
iScience ; 27(3): 109030, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361630

RESUMO

Fungal ß-glucans are major drivers of trained immunity which increases long-term protection against secondary infections. Heterogeneity in ß-glucan source, structure, and solubility alters interaction with the phagocytic receptor Dectin-1 and could impact strategies to improve trained immunity in humans. Using a panel of diverse ß-glucans, we describe the ability of a specific yeast-derived whole-glucan particle (WGP) to reprogram metabolism and thereby drive trained immunity in human monocyte-derived macrophages in vitro and mice bone marrow in vivo. Presentation of pure, non-soluble, non-aggregated WGPs led to the formation of the Dectin-1 phagocytic synapse with subsequent lysosomal mTOR activation, metabolic reprogramming, and epigenetic rewiring. Intraperitoneal or oral administration of WGP drove bone marrow myelopoiesis and improved mature macrophage responses, pointing to therapeutic and food-based strategies to drive trained immunity. Thus, the investment of a cell in a trained response relies on specific recognition of ß-glucans presented on intact microbial particles through stimulation of the Dectin-1 phagocytic response.

3.
Cell Rep ; 42(8): 112828, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37478011

RESUMO

System-level analysis of single-cell data is rapidly transforming the field of immunometabolism. Given the competitive demand for nutrients in immune microenvironments, there is a need to understand how and when immune cells access these nutrients. Here, we describe a new approach for single-cell analysis of nutrient uptake where we use in-cell biorthogonal labeling of a functionalized amino acid after transport into the cell. In this manner, the bona fide active uptake of glutamine via SLC1A5/ASCT2 could be quantified. We used this assay to interrogate the transport capacity of complex immune subpopulations, both in vitro and in vivo. Taken together, our findings provide an easy sensitive single-cell assay to assess which cells support their function via SLC1A5-mediated uptake. This is a significant addition to the single-cell metabolic toolbox required to decode the metabolic landscape of complex immune microenvironments.


Assuntos
Aminoácidos , Glutamina , Glutamina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transporte Biológico , Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
4.
Nat Commun ; 12(1): 5376, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508086

RESUMO

Natural killer (NK) cells are important early responders against viral infections. Changes in metabolism are crucial to fuel NK cell responses, and altered metabolism is linked to NK cell dysfunction in obesity and cancer. However, very little is known about the metabolic requirements of NK cells during acute retroviral infection and their importance for antiviral immunity. Here, using the Friend retrovirus mouse model, we show that following infection NK cells increase nutrient uptake, including amino acids and iron, and reprogram their metabolic machinery by increasing glycolysis and mitochondrial metabolism. Specific deletion of the amino acid transporter Slc7a5 has only discrete effects on NK cells, but iron deficiency profoundly impaires NK cell antiviral functions, leading to increased viral loads. Our study thus shows the requirement of nutrients and metabolism for the antiviral activity of NK cells, and has important implications for viral infections associated with altered iron levels such as HIV and SARS-CoV-2.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Infecções por Retroviridae/imunologia , Animais , Medula Óssea , COVID-19 , Citocinas , HIV , Infecções por HIV , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias , Retroviridae , Infecções por Retroviridae/virologia , SARS-CoV-2 , Carga Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa