Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Signal ; 13(633)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457113

RESUMO

Although insulin-like growth factor 1 (IGF-1) signaling promotes tumor growth and cancer progression, therapies that target the IGF-1 receptor (IGF-1R) have shown poor clinical efficacy. To address IGF-1R activity in cancer cells and how it differs from that of the closely related insulin receptor (IR), we focused on two tyrosines in the IGF-1R C-terminal tail that are not present in the IR and are essential for IGF-1-mediated cancer cell survival, migration, and tumorigenic growth. We found that Tyr1250 and Tyr1251 (Tyr1250/1251) were autophosphorylated in a cell adhesion-dependent manner. To investigate the consequences of this phosphorylation, we generated phosphomimetic Y1250E/Y1251E (EE) and nonphosphorylatable Y1250F/Y1251F (FF) mutant forms of IGF-1R. Although fully competent in kinase activity and signaling, the EE mutant was more rapidly internalized and degraded than either the wild-type or FF receptor. IGF-1 promoted the accumulation of wild-type and EE IGF-1R within the Golgi apparatus, whereas the FF mutant remained at the plasma membrane. Golgi-associated IGF-1R signaling was a feature of migratory cancer cells, and Golgi disruption impaired IGF-1-induced signaling and cell migration. Upon the formation of new cell adhesions, IGF-1R transiently relocalized to the plasma membrane from the Golgi. Thus, phosphorylation at Tyr1250/1251 promoted IGF-1R translocation to and signaling from the Golgi to support an aggressive cancer phenotype. This process distinguishes IGF-1R from IR signaling and could contribute to the poor clinical efficacy of antibodies that target IGF-1R on the cell surface.


Assuntos
Movimento Celular , Complexo de Golgi , Proteínas de Neoplasias , Neoplasias , Receptor IGF Tipo 1 , Adesão Celular , Linhagem Celular Tumoral , Complexo de Golgi/química , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
2.
Oncogene ; 37(23): 3131-3150, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29540831

RESUMO

IGF-1 receptor (IGF-1R) and integrin cooperative signaling promotes cancer cell survival, proliferation, and motility, but whether this influences cancer progression and therapy responses is largely unknown. Here we investigated the non-receptor tyrosine adhesion kinase FES-related (FER), following its identification as a potential mediator of sensitivity to IGF-1R kinase inhibition in a functional siRNA screen. We found that FER and the IGF-1R co-locate in cells and can be co-immunoprecipitated. Ectopic FER expression strongly enhanced IGF-1R expression and phosphorylation on tyrosines 950 and 1131. FER phosphorylated these sites in an IGF-1R kinase-independent manner and also enhanced IGF-1-mediated phosphorylation of SHC, and activation of either AKT or MAPK-signaling pathways in different cells. The IGF-1R, ß1 Integrin, FER, and its substrate cortactin were all observed to co-locate in cell adhesion complexes, the disruption of which reduced IGF-1R expression and activity. High FER expression correlates with phosphorylation of SHC in breast cancer cell lines and with a poor prognosis in patient cohorts. FER and SHC phosphorylation and IGF-1R expression could be suppressed with a known anaplastic lymphoma kinase inhibitor (AP26113) that shows high specificity for FER kinase. Overall, we conclude that FER enhances IGF-1R expression, phosphorylation, and signaling to promote cooperative growth and adhesion signaling that may facilitate cancer progression.


Assuntos
Adesão Celular/fisiologia , Proteínas Tirosina Quinases/metabolismo , Receptores de Somatomedina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Integrina beta1/metabolismo , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Compostos Organofosforados/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Pirimidinas/farmacologia , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética
3.
Oncotarget ; 7(35): 56826-56841, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27472395

RESUMO

The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.


Assuntos
Neoplasias da Mama/patologia , Cisplatino/farmacologia , Receptores de Somatomedina/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular , Dano ao DNA , Histonas/metabolismo , Humanos , Imidazóis/farmacologia , Concentração Inibidora 50 , Células MCF-7 , Oncogenes , Fosforilação , Pirazinas/farmacologia , Pirazóis/farmacologia , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Proteínas Recombinantes/metabolismo , Triazinas/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-26191041

RESUMO

IGF-1R expression and activation levels generally cannot be correlated in cancer cells, suggesting that cellular proteins may modulate IGF-1R activity. Strong candidates for such modulation are found in cell-matrix and cell-cell adhesion signaling complexes. Activated IGF-1R is present at focal adhesions, where it can stabilize ß1 integrin and participate in signaling complexes that promote invasiveness associated with epithelial mesenchymal transition (EMT) and resistance to therapy. Whether IGF-1R contributes to EMT or to non-invasive tumor growth may be strongly influenced by the degree of extracellular matrix engagement and the presence or absence of key proteins in IGF-1R-cell adhesion complexes. One such protein is PDLIM2, which promotes both cell polarization and EMT by regulating the stability of transcription factors including NFκB, STATs, and beta catenin. PDLIM2 exhibits tumor suppressor activity, but is also highly expressed in certain invasive cancers. It is likely that distinct adhesion complex proteins modulate IGF-1R signaling during cancer progression or adaptive responses to therapy. Thus, identifying the key modulators will be important for developing effective therapeutic strategies and predictive biomarkers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa