Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Immunol ; 24(6): 979-990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188942

RESUMO

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Assuntos
Antivirais , COVID-19 , Humanos , Calibragem , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Antígenos CD40 , Interferon-alfa , Linfócitos T CD4-Positivos
2.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35976880

RESUMO

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Microvilosidades/metabolismo , Fosforilação , Fosfotransferases/metabolismo
3.
Immunol Cell Biol ; 101(5): 383-396, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36744765

RESUMO

Many interferon (IFN)-stimulated genes are upregulated within host cells following infection with influenza and other viruses. While the antiviral activity of some IFN-stimulated genes, such as the IFN-inducible GTPase myxoma resistance (Mx)1 protein 1, has been well defined, less is known regarding the antiviral activities of related IFN-inducible GTPases of the guanylate-binding protein (GBP) family, particularly mouse GBPs, where mouse models can be used to assess their antiviral properties in vivo. Herein, we demonstrate that mouse GBP1 (mGBP1) was upregulated in a mouse airway epithelial cell line (LA-4 cells) following pretreatment with mouse IFNα or infection by influenza A virus (IAV). Whereas doxycycline-inducible expression of mouse Mx1 (mMx1) in LA-4 cells resulted in reduced susceptibility to IAV infection and reduced viral growth, inducible mGBP1 did not. Moreover, primary cells isolated from mGBP1-deficient mice (mGBP1-/- ) showed no difference in susceptibility to IAV and mGBP1-/- macrophages showed no defect in IAV-induced NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. After intranasal IAV infection, mGBP1-/- mice also showed no differences in virus replication or induction of inflammatory responses in the airways during infection. Thus, using complementary approaches such as mGBP1 overexpression, cells from mGBP1-/- mice and intranasal infection of mGBP1-/- we demonstrate that mGBP1 does not play a major role in modulating IAV infection in vitro or in vivo.


Assuntos
Proteínas de Ligação ao GTP , Influenza Humana , Animais , Humanos , Camundongos , Antivirais/metabolismo , Vírus da Influenza A , Influenza Humana/genética , Interferons/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação ao GTP/metabolismo
4.
J Virol ; 96(12): e0041922, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638820

RESUMO

Myxovirus resistance (Mx) proteins are dynamin-like GTPases that are inducible by interferons (IFNs) following virus infections. Most studies investigating Mx proteins have focused on their activity against influenza A viruses (IAV), although emerging evidence suggests that some Mx proteins may exhibit broader antiviral activity. Herein, we demonstrate that in addition to IAV, overexpression of mouse Mx1 (mMx1), but not mMx2, resulted in potent inhibition of growth of the human alphaherpesviruses herpes simplex virus 1 (HSV-1) and HSV-2, whereas neither inhibited the mouse betaherpesvirus murine cytomegalovirus (MCMV) in vitro. IFN induction of a functional endogenous mMx1 in primary mouse fibroblasts ex vivo was also associated with inhibition of HSV-1 growth. Using an in vitro overexpression approach, we demonstrate that mutations that result in redistribution of mMx1 from the nucleus to the cytoplasm or in loss of its combined GTP binding and GTPase activity also abrogated its ability to inhibit HSV-1 growth. Overexpressed mMx1 did not inhibit early HSV-1 gene expression but was shown to inhibit both replication of the HSV-1 genome as well as subsequent late gene expression. In a mouse model of cutaneous HSV-1 infection, mice expressing a functional endogenous mMx1 showed significant reductions in the severity of skin lesions as well as reduced HSV-1 titers in both the skin and dorsal root ganglia (DRG). Together, these data demonstrate that mMx1 mediates potent antiviral activity against human alphaherpesviruses by blocking replication of the viral genome and subsequent steps in virus replication. Moreover, endogenous mMx1 potently inhibited pathogenesis in the zosteriform mouse model of HSV-1 infection. IMPORTANCE While a number of studies have demonstrated that human Mx proteins can inhibit particular herpesviruses in vitro, we are the first to report the antiviral activity of mouse Mx1 (mMx1) against alphaherpesviruses both in vitro and in vivo. We demonstrate that both overexpressed mMx1 and endogenous mMx1 potently restrict HSV-1 growth in vitro. mMx1-mediated inhibition of HSV-1 was not associated with inhibition of virus entry and/or import of the viral genome into the nucleus, but rather with inhibition of HSV-1 genomic replication as well as subsequent late gene expression. Therefore, inhibition of human alphaherpesviruses by mMx1 occurs by a mechanism that is distinct from that reported for human Mx proteins against herpesviruses. Importantly, we also provide evidence that expression of a functional endogenous mMx1 can limit HSV-1 pathogenesis in a mouse model of infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas de Resistência a Myxovirus , Replicação Viral , Animais , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Camundongos , Muromegalovirus , Proteínas de Resistência a Myxovirus/metabolismo
5.
J Immunol ; 206(4): 849-860, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33441440

RESUMO

HLA class I molecules that represent ligands for the inhibitory killer cell Ig-like receptor (KIR) 3DL1 found on NK cells are categorically defined as those HLA-A and HLA-B allotypes containing the Bw4 motif, yet KIR3DL1 demonstrates hierarchical recognition of these HLA-Bw4 ligands. To better understand the molecular basis underpinning differential KIR3DL1 recognition, the HLA-ABw4 family of allotypes were investigated. Transfected human 721.221 cells expressing HLA-A*32:01 strongly inhibited primary human KIR3DL1+ NK cells, whereas HLA-A*24:02 and HLA-A*23:01 displayed intermediate potency and HLA-A*25:01 failed to inhibit activation of KIR3DL1+ NK cells. Structural studies demonstrated that recognition of HLA-A*24:02 by KIR3DL1 used identical contacts as the potent HLA-B*57:01 ligand. Namely, the D1-D2 domains of KIR3DL1 were placed over the α1 helix and α2 helix of the HLA-A*24:02 binding cleft, respectively, whereas the D0 domain contacted the side of the HLA-A*24:02 molecule. Nevertheless, functional analyses showed KIR3DL1 recognition of HLA-A*24:02 was more sensitive to substitutions within the α2 helix of HLA-A*24:02, including residues Ile142 and Lys144 Furthermore, the presence of Thr149 in the α2 helix of HLA-A*25:01 abrogated KIR3DL1+ NK inhibition. Together, these data demonstrate a role for the HLA class I α2 helix in determining the hierarchy of KIR3DL1 ligands. Thus, recognition of HLA class I is dependent on a complex interplay between the peptide repertoire, polymorphisms within and proximal to the Bw4 motif, and the α2 helix. Collectively, the data furthers our understanding of KIR3DL1 ligands and will inform genetic association and immunogenetics studies examining the role of KIR3DL1 in disease settings.


Assuntos
Antígenos HLA-A , Células Matadoras Naturais , Receptores KIR3DL1 , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Humanos , Células Matadoras Naturais/química , Células Matadoras Naturais/imunologia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Receptores KIR3DL1/química , Receptores KIR3DL1/imunologia
6.
Proc Natl Acad Sci U S A ; 117(21): 11636-11647, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404419

RESUMO

Micropolymorphisms within human leukocyte antigen (HLA) class I molecules can change the architecture of the peptide-binding cleft, leading to differences in peptide presentation and T cell recognition. The impact of such HLA variation on natural killer (NK) cell recognition remains unclear. Given the differential association of HLA-B*57:01 and HLA-B*57:03 with the control of HIV, recognition of these HLA-B57 allomorphs by the killer cell immunoglobulin-like receptor (KIR) 3DL1 was compared. Despite differing by only two polymorphic residues, both buried within the peptide-binding cleft, HLA-B*57:01 more potently inhibited NK cell activation. Direct-binding studies showed KIR3DL1 to preferentially recognize HLA-B*57:01, particularly when presenting peptides with positively charged position (P)Ω-2 residues. In HLA-B*57:01, charged PΩ-2 residues were oriented toward the peptide-binding cleft and away from KIR3DL1. In HLA-B*57:03, the charged PΩ-2 residues protruded out from the cleft and directly impacted KIR3DL1 engagement. Accordingly, KIR3DL1 recognition of HLA class I ligands is modulated by both the peptide sequence and conformation, as determined by the HLA polymorphic framework, providing a rationale for understanding differences in clinical associations.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais/fisiologia , Polimorfismo Genético/genética , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Ativação Linfocitária/genética , Modelos Moleculares , Polimorfismo Genético/fisiologia , Receptores KIR/genética
7.
Nature ; 501(7466): 247-51, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24025841

RESUMO

Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Transdução de Sinais , Fatores de Virulência/metabolismo , Animais , Caspase 8/metabolismo , Morte Celular , Citrobacter rodentium/patogenicidade , Citrobacter rodentium/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Ativação Enzimática , Infecções por Escherichia coli/patologia , Proteína Ligante Fas/antagonistas & inibidores , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/química , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Estrutura Terciária de Proteína , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/química , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Receptor fas/deficiência , Receptor fas/metabolismo
8.
J Biol Chem ; 291(38): 20149-62, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27445336

RESUMO

The type III secretion system effector protein NleE from enteropathogenic Escherichia coli plays a key role in the inhibition of NF-κB activation during infection. NleE inactivates the ubiquitin chain binding activity of host proteins TAK1-binding proteins 2 and 3 (TAB2 and TAB3) by modifying the Npl4 zinc finger domain through S-adenosyl methionine-dependent cysteine methylation. Using yeast two-hybrid protein interaction studies, we found that a conserved region between amino acids 34 and 52 of NleE, in particular the motif (49)GITR(52), was critical for TAB2 and TAB3 binding. NleE mutants lacking (49)GITR(52) were unable to methylate TAB3, and wild type NleE but not NleE(49AAAA52) where each of GITR was replaced with alanine restored the ability of an nleE mutant to inhibit IL-8 production during infection. Another NleE target, ZRANB3, also associated with NleE through the (49)GITR(52) motif. Ectopic expression of an N-terminal fragment of NleE (NleE(34-52)) in HeLa cells showed competitive inhibition of wild type NleE in the suppression of IL-8 secretion during enteropathogenic E. coli infection. Similar results were observed for the NleE homologue OspZ from Shigella flexneri 6 that also bound TAB3 through the (49)GITR(52) motif and decreased IL-8 transcription through modification of TAB3. In summary, we have identified a unique substrate-binding motif in NleE and OspZ that is required for the ability to inhibit the host inflammatory response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Disenteria Bacilar/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Shigella flexneri/metabolismo , Fatores de Virulência/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , DNA Helicases/genética , Disenteria Bacilar/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica , Shigella flexneri/genética
9.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138023

RESUMO

During infection, enteropathogenic Escherichia coli (EPEC) translocates effector proteins directly into the cytosol of infected enterocytes using a type III secretion system (T3SS). Once inside the host cell, these effector proteins subvert various immune signaling pathways, including death receptor-induced apoptosis. One such effector protein is the non-locus of enterocyte effacement (LEE)-encoded effector NleB1, which inhibits extrinsic apoptotic signaling via the FAS death receptor. NleB1 transfers a single N-acetylglucosamine (GlcNAc) residue to Arg117 in the death domain of Fas-associated protein with death domain (FADD) and inhibits FAS ligand (FasL)-stimulated caspase-8 cleavage. Another effector secreted by the T3SS is NleF. Previous studies have shown that NleF binds to and inhibits the activity of caspase-4, -8, and -9 in vitro Here, we investigated a role for NleF in the inhibition of FAS signaling and apoptosis during EPEC infection. We show that NleF prevents the cleavage of caspase-8, caspase-3, and receptor-interacting serine/threonine protein kinase 1 (RIPK1) in response to FasL stimulation. When translocated into host cells by the T3SS or expressed ectopically, NleF also blocked FasL-induced cell death. Using the EPEC-like mouse pathogen Citrobacter rodentium, we found that NleB but not NleF contributed to colonization of mice in the intestine. Hence, despite their shared ability to block FasL/FAS signaling, NleB and NleF have distinct roles during infection.


Assuntos
Apoptose , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/metabolismo , Caspases/metabolismo , Linhagem Celular , Expressão Ectópica do Gene , Proteínas de Escherichia coli/genética , Proteína Ligante Fas/metabolismo , Teste de Complementação Genética , Células HEK293 , Células HeLa , Humanos , Mutação , Transdução de Sinais , Fatores de Virulência/genética , Receptor fas/metabolismo
10.
Infect Immun ; 83(10): 3989-4002, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216420

RESUMO

Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/enzimologia , Doença dos Legionários/microbiologia , Fosfolipase D/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Membrana Celular/enzimologia , Humanos , Legionella pneumophila/genética , Lipoilação , Camundongos , Fosfolipase D/genética , Transporte Proteico , Vacúolos/enzimologia , Fatores de Virulência/genética
11.
Infect Immun ; 81(11): 4261-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002062

RESUMO

The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is crucial for the pathogen to survive in protozoa and cause human disease. Although more than 275 effector proteins are delivered into the host cell by the T4SS, the function of the majority is unknown. Here we have characterized the Dot/Icm effector LtpD. During infection, LtpD localized to the cytoplasmic face of the membrane of the Legionella-containing vacuole (LCV). In A549 lung epithelial cells, ectopically expressed LtpD localized to large vesicular structures that contained markers of endosomal compartments. Systematic analysis of LtpD fragments identified an internal 17-kDa fragment, LtpD471-626, which was essential for targeting ectopically expressed LtpD to vesicular structures and for the association of translocated LtpD with the LCV. LtpD471-626 bound directly to phosphatidylinositol 3-phosphate [PtdIns(3)P] in vitro and colocalized with the PtdIns(3)P markers FYVE and SetA in cotransfected cells. LtpD was also found to bind the host cell enzyme inositol (myo)-1 (or 4)-monophosphatase 1, an important phosphatase involved in phosphoinositide production. Analysis of the role of LtpD in infection showed that LtpD is involved in bacterial replication in THP-1 macrophages, the larvae of Galleria mellonella, and mouse lungs. Together, these data suggest that LtpD is a novel phosphoinositide-binding L. pneumophila effector that has a role in intracellular bacterial replication.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/patogenicidade , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Células Epiteliais/química , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Endogâmicos A , Monócitos/química , Monócitos/metabolismo , Monócitos/microbiologia , Ligação Proteica , Análise de Sobrevida , Vacúolos/química , Vacúolos/metabolismo , Vacúolos/microbiologia
12.
Infect Immun ; 81(7): 2598-605, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23649096

RESUMO

Legionella pneumophila is an intracellular bacterium that resides within amoebae and macrophages in a specialized compartment termed the Legionella-containing vacuole (LCV). As well as providing an intracellular niche for replication, the LCV helps to prevent the release of bacterial components into the cytoplasm. Recognition of these components as danger signals by the host activates immune responses leading to clearance of the bacterium. Here, we examined the role of two important virulence factors of L. pneumophila, the potent danger signal flagellin and the translocated Dot/Icm type IVB secretion system effector SdhA, which is crucial to maintain LCV integrity, in the Galleria mellonella infection model. We demonstrate that flagellin expression does not contribute to virulence, replication, or induction of clearance mechanisms. Conversely, SdhA expression is important for virulence. We found that in the absence of SdhA, the LCV in hemocytes showed signs of instability and leakage. Furthermore, in contrast to wild-type L. pneumophila, a ΔsdhA mutant caused a transient depletion of hemocytes and reduced mortality. Analysis of the ΔsdhA mutant in the A/J mouse model also showed a significant replication defect. Together, our data underline the crucial importance of SdhA in infection across different model organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Legionella pneumophila/patogenicidade , Mariposas/microbiologia , Animais , Sistemas de Secreção Bacterianos , Feminino , Flagelina/metabolismo , Hemócitos/metabolismo , Hemócitos/microbiologia , Larva/microbiologia , Legionella pneumophila/metabolismo , Legionelose/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Modelos Animais , Transporte Proteico , Fatores de Virulência/metabolismo
13.
Transplant Direct ; 9(7): e1501, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37313314

RESUMO

Cytomegalovirus (CMV) infection causes significant morbidity and mortality in lung transplant recipients. Current guidelines use pretransplant donor and recipient CMV serostatus to predict the risk of subsequent CMV replication and length of antiviral prophylaxis. Immunological monitoring may better inform the risk of CMV infection in patients, thereby allowing for improved tailoring of antiviral prophylaxis. In this study, we compared 2 commercially available assays, the QuantiFERON-CMV (QFN-CMV) and T-Track-CMV (enzyme-linked immunosorbent spot assay), to predict the risk of CMV disease in lung transplant recipients. Methods: We performed CMV immunity assays on 32 lung transplant recipients at risk of CMV disease as defined by serostatus (CMV-seropositive recipients, n = 26; or CMV-seronegative lung transplant recipient receiving a CMV-seropositive donor organ, n = 6). QFN-CMV and T-Track were performed on peripheral blood mononuclear cells, and episodes of CMV replication in both serum and bronchoalveolar lavage were found to be correlated to the CMV immune assays. The predictive ability of the assays was determined using Kaplan-Meier curves. Results: There was a degree of concordance between tests, with 44% of recipients positive for both tests and 28% negative for both tests; however, test results were discordant in 28% of cases. A negative result in either the QFN-CMV (P < 0.01) or T-Track (P < 0.05) assays was obtained in a significantly higher number of recipients who experienced CMV replication in the blood. Using these assays together gave higher predictability of CMV replication, with only 1 recipient experiencing CMV replication in the blood who obtained a positive test result for both assays. Neither assay was able to predict recipients who experienced CMV replication in the lung allograft. Conclusions: Our study demonstrates that CMV immunity assays can predict viremia; however, the lack of association with allograft infection suggests that CMV-specific T-cell immunity in the circulation is not associated with the control of CMV replication within the transplanted lung allograft.

14.
J Immunol ; 184(10): 5429-33, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20400697

RESUMO

Plasmacytoid dendritic cells (pDCs) are well known as the major cell type that secretes type I IFN in response to viral infections. Their role in combating other classes of infectious organisms, including bacteria, and their mechanisms of action are poorly understood. We have found that pDCs play a significant role in the acute response to the intracellular bacterial pathogen Legionella pneumophila. pDCs were rapidly recruited to the lungs of L. pneumophila-infected mice, and depletion of pDCs resulted in increased bacterial load. The ability of pDCs to combat infection did not require type I IFN. This study points to an unappreciated role for pDCs in combating bacterial infections and indicates a novel mechanism of action for this cell type.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Interferon Tipo I/fisiologia , Legionella pneumophila/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Animais , Células Dendríticas/metabolismo , Interferon Tipo I/deficiência , Interferon Tipo I/genética , Legionella pneumophila/crescimento & desenvolvimento , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética
15.
Infect Immun ; 79(3): 1067-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21189318

RESUMO

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) are important human pathogens that rely on translocation of type III secretion system (T3SS) effectors for subversion of signal transduction pathways and colonization of the mammalian gut mucosa. While a core set of effectors is conserved between EPEC and EHEC strains, a growing number of accessory effectors that were found at various frequencies in clinical and environmental isolates have been recently identified. Recent genome projects identified espV as a pseudogene in EHEC but a putative functional gene in EPEC strains E110019 and E22 and the closely related mouse pathogen Citrobacter rodentium. The aim of this study was to determine the distribution of espV among clinical EPEC and EHEC strains and to investigate its function and role in pathogenesis. espV was found in 16% of the tested strains. While deletion of espV from C. rodentium did not affect colonization dynamics or fitness in mixed infections, expression of EspV in mammalian cells led to drastic morphological alterations, which were characterized by nuclear condensation, cell rounding, and formation of dendrite-like projections. Expression of EspV in yeast resulted in a dramatic increase in cell size and irreversible growth arrest. Although the role of EspV in infection and its target host cell protein(s) require further investigation, the data point to a novel mechanism by which the T3SS subverts cell signaling.


Assuntos
Sistemas de Secreção Bacterianos/genética , Citrobacter rodentium/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Células Eucarióticas/microbiologia , Imunofluorescência , Genes Bacterianos/genética , Células HeLa , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Virulência
16.
mSphere ; 4(6)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722994

RESUMO

O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide ß-Gal-(1,3)-α-GalNAc-(1,3)-ß-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia cenocepacia/crescimento & desenvolvimento , Burkholderia cenocepacia/metabolismo , Glicosilação , Sideróforos/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Proteômica
17.
Nat Microbiol ; 2: 16258, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28085133

RESUMO

Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-ß (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling1-3. RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis4,5. Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.


Assuntos
Apoptose , Proteínas de Escherichia coli/metabolismo , Inflamação , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Morte Celular , Citrobacter rodentium/patogenicidade , Cisteína Proteases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli Enteropatogênica/enzimologia , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/genética , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Sistemas de Secreção Tipo III
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa