RESUMO
SPRY domain-containing protein 7 (SPRYD7) is a barely known protein identified via spatial proteomics as being upregulated in highly metastatic-to-liver KM12SM colorectal cancer (CRC) cells in comparison to its isogenic poorly metastatic KM12C CRC cells. Here, we aimed to analyze SPRYD7's role in CRC via functional proteomics. Through immunohistochemistry, the overexpression of SPRYD7 was observed to be associated with the poor survival of CRC patients and with an aggressive and metastatic phenotype. Stable SPRYD7 overexpression was performed in KM12C and SW480 poorly metastatic CRC cells and in their isogenic highly metastatic-to-liver-KM12SM-and-to-lymph-nodes SW620 CRC cells, respectively. Upon upregulation of SPRYD7, in vitro and in vivo functional assays confirmed a key role of SPRYD7 in the invasion and migration of CRC cells and in liver homing and tumor growth. Additionally, transient siRNA SPRYD7 silencing allowed us to confirm in vitro functional results. Furthermore, SPRYD7 was observed as an inductor of angiogenesis. In addition, the dysregulated SPRYD7-associated proteome and SPRYD7 interactors were elucidated via 10-plex TMT quantitative proteins, immunoproteomics, and bioinformatics. After WB validation, the biological pathways associated with the stable overexpression of SPRYD7 were visualized. In conclusion, it was demonstrated here that SPRYD7 is a novel protein associated with CRC progression and metastasis. Thus, SPRYD7 and its interactors might be of relevance in identifying novel therapeutic targets for advanced CRC.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Fenótipo , Proteômica/métodosRESUMO
Few studies on the relationship between environmental factors and Trypanosoma cruzi transmission have been conducted in Ecuador. We conducted a cross-sectional study of household risk factors for T. cruzi seropositivity in 2 distinct geographical regions of Ecuador. Exposure information was collected via household surveys, and subjects were tested for serological evidence of T. cruzi infection. In total, 3,286 subjects from 997 households were included. In the coastal region, factors associated with seropositivity were living in a house with a palm roof (odds ratio [OR] = 2.63, 95% confidence interval, [1.61. 4.27]), wood walls (OR = 5.75 [2.04, 16.18]), or cane walls (OR = 2.81 11.31, 6.04]), and the presence of firewood in the peridomicile (OR = 2.48 [1.54, 4.01]). Accumulation of trash outside the home was associated with a reduced risk of seropositivity (OR = 0.25 [0.12, 0.51]). In the Andean region, living in a house with adobe walls was the only factor predictive of T. cruzi seropositivity. In conclusion, risk factors for T. cruzi transmission in Ecuador varied by geographic region, probably because of differing behavior of the triatomine vector species in each region. An understanding of the transmission dynamics of T. cruzi in a particular area is necessary for the development of effective Chagas disease control strategies in those areas.
Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/epidemiologia , Habitação/classificação , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/transmissão , Materiais de Construção/classificação , Estudos Transversais , Equador/epidemiologia , Geografia , Humanos , Insetos Vetores/classificação , Insetos Vetores/crescimento & desenvolvimento , Razão de Chances , Fatores de Risco , Estudos Soroepidemiológicos , Triatominae/classificação , Triatominae/crescimento & desenvolvimentoRESUMO
Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data ('landscape genetics') is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so.
Assuntos
Genômica , Interações Hospedeiro-Parasita , Doenças Parasitárias/prevenção & controle , Doenças Parasitárias/parasitologia , Animais , Interações Hospedeiro-Parasita/genética , Humanos , Doenças Parasitárias/epidemiologia , Doenças Parasitárias/transmissão , FenótipoRESUMO
Chagas disease is endemic in ~70% of Ecuador. Rhodnius ecuadoriensis and Triatoma carrioni (Hemiptera: Reduviidae) are the primary vectors of Chagas disease in Southern Ecuador. This study tested the effectiveness of selective deltamethrin application of Domiciliary Units (DUs) infested with triatomines, coupled with community education activities and a community-based surveillance system. Ten communities were selected in Loja Province, 466 DUs were examined, of these, 5.6% were infested with R. ecuadoriensis (Density [D] = 4 triatomines/DUs searched, Crowding [CR] = 71 triatomines/infested house, Colonization Index [CI] = 77% infested DUs with nymphs) and 8% with T. carrioni (D = 0.6, CR = 7, CI = 64%). Infested DUs were sprayed with deltamethrin. Subsequent visits were conducted at 6 and 12 mo after spraying. At each time point, new entomological searches were carried out in all DUs. All entomological indexes dropped significantly for the primary vector species one year after the initial intervention (R. ecuadoriensis: I = 2%, D = 0.1, CR = 7, CI = 100%; T. carrioni: I = 1.6%, D = 0.1, CR = 5.5, CI = 50%). Fifteen min educational talks were conducted in every DUs and workshops for schoolchildren were organized. Community-based surveillance system was established. However, there is a high risk of DUs reinfestation, possibly from sylvatic habitats (especially of R. ecuadoriensis) and reinforcing educational and surveillance activities are necessary.