Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 123, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849845

RESUMO

BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-met , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Modelos Animais de Doenças , Criança , Gradação de Tumores , Anilidas/farmacologia , Imidazóis , Triazinas
2.
Cancer Metastasis Rev ; 42(2): 367-388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119408

RESUMO

Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.


Assuntos
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Adolescente , Adulto Jovem , Humanos , Criança , Histonas/genética , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigênese Genética , Mutação
3.
Development ; 146(20)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31540917

RESUMO

Cerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia whereas excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although sonic hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms downregulating proliferation are less defined. We investigated CGNP regulation by GSK-3, which downregulates proliferation in the forebrain, gut and breast by suppressing mitogenic WNT signaling in mouse. In striking contrast to these systems, we found that co-deleting Gsk3a and Gsk3b blocked CGNP proliferation, causing severe cerebellar hypoplasia. The GSK-3 inhibitor CHIR-98014 similarly downregulated SHH-driven proliferation. Transcriptomic analysis showed activated WNT signaling and upregulated Cdkn1a in Gsk3a/b-deleted CGNPs. Ctnnb co-deletion increased CGNP proliferation and rescued cerebellar hypoproliferation in Gsk3a/b mutants, demonstrating physiological control of CGNPs by GSK-3, mediated through WNT. SHH-driven medulloblastomas similarly required GSK-3, as co-deleting Gsk3a/b blocked tumor growth in medulloblastoma-prone SmoM2 mice. These data show that a GSK-3/WNT axis modulates the developmental proliferation of CGNPs and the pathological growth of SHH-driven medulloblastoma. The requirement for GSK-3 in SHH-driven proliferation suggests that GSK-3 may be targeted for SHH-driven medulloblastoma therapy.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Neurogênese/fisiologia , Aminopiridinas/farmacologia , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , Camundongos , Camundongos Mutantes , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Pirimidinas/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Cancer Res ; 76(11): 3211-23, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197166

RESUMO

While treatments that induce DNA damage are commonly used as anticancer therapies, the mechanisms through which DNA damage produces a therapeutic response are incompletely understood. Here we have tested whether medulloblastomas must be competent for apoptosis to be sensitive to radiotherapy. Whether apoptosis is required for radiation sensitivity has been controversial. Medulloblastoma, the most common malignant brain tumor in children, is a biologically heterogeneous set of tumors typically sensitive to radiation and chemotherapy; 80% of medulloblastoma patients survive long-term after treatment. We used functional genetic studies to determine whether the intrinsic apoptotic pathway is required for radiation to produce a therapeutic response in mice with primary, Shh-driven medulloblastoma. We found that cranial radiation extended the survival of medulloblastoma-bearing mice and induced widespread apoptosis. Expression analysis and conditional deletion studies showed that Trp53 (p53) was the predominant transcriptional regulator activated by radiation and was strictly required for treatment response. Deletion of Bax, which blocked apoptosis downstream of p53, was sufficient to render tumors radiation resistant. In apoptosis-incompetent, Bax-deleted tumors, radiation activated p53-dependent transcription without provoking cell death and caused two discrete populations to emerge. Most radiated tumor cells underwent terminal differentiation. Perivascular cells, however, quickly resumed proliferation despite p53 activation, behaved as stem cells, and rapidly drove recurrence. These data show that radiation must induce apoptosis in tumor stem cells to be effective. Mutations that disable the intrinsic apoptotic pathways are sufficient to impart radiation resistance. We suggest that medulloblastomas are typically sensitive to DNA-damaging therapies, because they retain apoptosis competence. Cancer Res; 76(11); 3211-23. ©2016 AACR.


Assuntos
Apoptose/efeitos da radiação , Neoplasias Cerebelares/patologia , Modelos Animais de Doenças , Meduloblastoma/patologia , Tolerância a Radiação/genética , Animais , Western Blotting , Proliferação de Células , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Raios gama , Meduloblastoma/genética , Meduloblastoma/radioterapia , Camundongos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa