Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314989

RESUMO

Rho of plant (ROP) proteins and the interactor of constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules that regulate metaxylem secondary cell wall patterning. Yet, loss-of-function mutants of ICR5 and its closest homologs have not been studied and, hence, the functions of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of Arabidopsis icr2 and icr5 single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings; however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, whereas icr2, but not icr5, mutants develop split root hairs, demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(37): E8783-E8792, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150370

RESUMO

Pith parenchyma cells store water in various plant organs. These cells are especially important for producing sugar and ethanol from the sugar juice of grass stems. In many plants, the death of pith parenchyma cells reduces their stem water content. Previous studies proposed that a hypothetical D gene might be responsible for the death of stem pith parenchyma cells in Sorghum bicolor, a promising energy grass, although its identity and molecular function are unknown. Here, we identify the D gene and note that it is located on chromosome 6 in agreement with previous predictions. Sorghum varieties with a functional D allele had stems enriched with dry, dead pith parenchyma cells, whereas those with each of six independent nonfunctional D alleles had stems enriched with juicy, living pith parenchyma cells. D expression was spatiotemporally coupled with the appearance of dead, air-filled pith parenchyma cells in sorghum stems. Among D homologs that are present in flowering plants, Arabidopsis ANAC074 also is required for the death of stem pith parenchyma cells. D and ANAC074 encode previously uncharacterized NAC transcription factors and are sufficient to ectopically induce programmed death of Arabidopsis culture cells via the activation of autolytic enzymes. Taken together, these results indicate that D and its Arabidopsis ortholog, ANAC074, are master transcriptional switches that induce programmed death of stem pith parenchyma cells. Thus, targeting the D gene will provide an approach to breeding crops for sugar and ethanol production.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Caules de Planta/genética , Sorghum/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Carboidratos/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Geografia , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Homologia de Sequência do Ácido Nucleico , Sorghum/citologia , Sorghum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Cell ; 29(12): 3123-3139, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29133465

RESUMO

Proper patterning of the cell wall is essential for plant cell development. Cortical microtubule arrays direct the deposition patterns of cell walls at the plasma membrane. However, the precise mechanism underlying cortical microtubule organization is not well understood. Here, we show that a microtubule-associated protein, CORD1 (CORTICAL MICROTUBULE DISORDERING1), is required for the pitted secondary cell wall pattern of metaxylem vessels in Arabidopsis thaliana Loss of CORD1 and its paralog, CORD2, led to the formation of irregular secondary cell walls with small pits in metaxylem vessels, while overexpressing CORD1 led to the formation of abnormally enlarged secondary cell wall pits. Ectopic expression of CORD1 disturbed the parallel cortical microtubule array by promoting the detachment of microtubules from the plasma membrane. A reconstructive approach revealed that CORD1-induced disorganization of cortical microtubules impairs the boundaries of plasma membrane domains of active ROP11 GTPase, which govern pit formation. Our data suggest that CORD1 promotes cortical microtubule disorganization to regulate secondary cell wall pit formation. The Arabidopsis genome has six CORD1 paralogs that are expressed in various tissues during plant development, suggesting they are important for regulating cortical microtubules during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Padronização Corporal , Parede Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Domínios Proteicos , Xilema/citologia , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo
5.
J Plant Res ; 131(1): 5-14, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29170834

RESUMO

Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.


Assuntos
Membrana Celular/fisiologia , Microtúbulos/fisiologia , Fenômenos Fisiológicos Vegetais
6.
New Phytol ; 213(3): 1052-1067, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27801942

RESUMO

Cortical microtubules (MTs) play a major role in the patterning of secondary cell wall (SCW) thickenings in tracheary elements (TEs) by determining the sites of SCW deposition. The EXO70A1 subunit of the exocyst secretory vesicle tethering complex was implicated to be important for TE development via the MT interaction. We investigated the subcellular localization of several exocyst subunits in the xylem of Arabidopsis thaliana and analyzed the functional significance of exocyst-mediated trafficking in TE development. Live cell imaging of fluorescently tagged exocyst subunits in TE using confocal microscopy and protein-protein interaction assays were performed to describe the role of the exocyst and its partners in TE development. In TEs, exocyst subunits were localized to the sites of SCW deposition in an MT-dependent manner. We propose that the mechanism of exocyst targeting to MTs involves the direct interaction of exocyst subunits with the COG2 protein. We demonstrated the importance of a functional exocyst subunit EXO84b for normal TE development and showed that the deposition of SCW constituents is partially compromised, possibly as a result of the mislocalization of secondary cellulose synthase in exocyst mutants. We conclude that the exocyst complex is an important factor bridging the pattern defined by cortical MTs with localized secretion of the SCW in developing TEs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Microtúbulos/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Arabidopsis/ultraestrutura , Diferenciação Celular , Membrana Celular/metabolismo , Parede Celular/metabolismo , Sequência Conservada , Glucosiltransferases/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Mutação/genética , Feixe Vascular de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Xilema/citologia , Xilema/ultraestrutura
7.
Plant Cell ; 25(11): 4439-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24280391

RESUMO

Plant cortical microtubule arrays determine the cell wall deposition pattern and proper cell shape and function. Although various microtubule-associated proteins regulate the cortical microtubule array, the mechanisms underlying marked rearrangement of cortical microtubules during xylem differentiation are not fully understood. Here, we show that local Rho of Plant (ROP) GTPase signaling targets an Arabidopsis thaliana kinesin-13 protein, Kinesin-13A, to cortical microtubules to establish distinct patterns of secondary cell wall formation in xylem cells. Kinesin-13A was preferentially localized with cortical microtubules in secondary cell wall pits, areas where cortical microtubules are depolymerized to prevent cell wall deposition. This localization of Kinesin-13A required the presence of the activated ROP GTPase, MICROTUBULE DEPLETION DOMAIN1 (MIDD1) protein, and cortical microtubules. Knockdown of Kinesin-13A resulted in the formation of smaller secondary wall pits, while overexpression of Kinesin-13A enlarged their surface area. Kinesin-13A alone could depolymerize microtubules in vitro; however, both MIDD1 and Kinesin-13A were required for the depolymerization of cortical microtubules in vivo. These results indicate that Kinesin-13A regulates the formation of secondary wall pits by promoting cortical microtubule depolymerization via the ROP-MIDD1 pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Parede Celular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/genética , Microtúbulos/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Xilema/citologia , Xilema/metabolismo , Proteínas rho de Ligação ao GTP/genética
8.
Plant Cell Physiol ; 56(2): 277-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25541219

RESUMO

Xylem vessel cells develop secondary cell walls in distinct patterns. Cortical microtubules are rearranged into distinct patterns and regulate secondary cell wall deposition; however, it is unclear how exocytotic membrane trafficking is linked to cortical microtubules. Here, we show that the novel coiled-coil proteins vesicle tethering 1 (VETH1) and VETH2 recruit EXO70A1, an exocyst subunit essential for correct patterning of secondary cell wall deposition, to cortical microtubules via the conserved oligomeric Golgi complex (COG) 2 protein. VETH1 and VETH2 encode an uncharacterized domain of an unknown function designated DUF869, and were preferentially up-regulated in xylem cells. VETH1-green fluorescent protein (GFP) and VETH2-GFP co-localized at novel vesicle-like small compartments, which exhibited microtubule plus-end-directed and end-tracking dynamics. VETH1 and VETH2 interacted with COG2, and this interaction promoted the association between cortical microtubules and EXO70A1 These results suggest that the VETH-COG2 complex ensures the correct secondary cell wall deposition pattern by recruiting exocyst components to cortical microtubules.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Exocitose , Microtúbulos/metabolismo , Xilema/citologia , Xilema/metabolismo , Arabidopsis/citologia , Biomarcadores/metabolismo , Compartimento Celular , Vesículas Citoplasmáticas/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Nicotiana
9.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119858, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39370045

RESUMO

Microtubules (MTs) are dynamic cytoskeletal polymers that play a critical role in determining cell polarity and shape. In plant cells, acentrosomal MTs are localized on the cell surface and are referred to as cortical MTs. Cortical MTs nucleate in the cell cortex and detach from nucleation sites. The released MT filaments perform treadmilling, with the plus-ends of MTs polymerizing and the minus-ends depolymerizing. Minus-end targeting proteins, -TIPs, include Spiral2, which regulates the minus-end dynamics of acentrosomal MTs. Spiral2 accumulates autonomously at MT minus-ends and inhibits filament shrinkage, but the mechanism by which Spiral2 specifically recognizes minus-ends of MTs remains unknown. Here we describe the crystal structure of Spiral2's N-terminal MT-binding domain. The structural properties of this domain resemble those of the HEAT repeat structure of the tumor overexpressed gene (TOG) domain, but the number of HEAT repeats is different and the conformation is highly arched. Gel filtration and co-sedimentation analyses demonstrate that the domain binds preferentially to MT filaments rather than the tubulin dimer, and that the tubulin-binding mode of Spiral2 via the basic surface is similar to that of the TOG domain. We constructed an in silico model of the Spiral2-tubulin complex to identify residues that potentially recognize tubulin. Mutational analysis revealed that the key residues inferred in the model are involved in microtubule recognition, and provide insight into the mechanism by which end-targeting proteins stabilize MT ends.


Assuntos
Bryopsida , Proteínas Associadas aos Microtúbulos , Microtúbulos , Ligação Proteica , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Moleculares , Domínios Proteicos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
10.
Nat Plants ; 10(1): 100-117, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38172572

RESUMO

Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Separação de Fases , Parede Celular/metabolismo , Microtúbulos/metabolismo , Xilema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
11.
Nat Plants ; 10(8): 1172-1183, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39134664

RESUMO

Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.


Assuntos
Membrana Celular , Microdomínios da Membrana , Plantas , Terminologia como Assunto , Microdomínios da Membrana/metabolismo , Membrana Celular/metabolismo
12.
Plant J ; 72(1): 129-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22680239

RESUMO

Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven ß subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin ß-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.


Assuntos
Peptídeo Hidrolases/isolamento & purificação , Populus/enzimologia , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Xilema/enzimologia , Apoptose , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Caspase 3/isolamento & purificação , Caspase 3/metabolismo , Diferenciação Celular , Parede Celular/metabolismo , Lactonas/farmacologia , Oligopeptídeos/farmacologia , Peptídeo Hidrolases/metabolismo , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Populus/citologia , Populus/efeitos dos fármacos , Populus/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Xilema/citologia , Xilema/crescimento & desenvolvimento
13.
Plant Cell ; 22(10): 3461-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20952636

RESUMO

Xylem consists of three types of cells: tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanisms underlying these processes. Here, we show that VASCULAR-RELATED NAC-DOMAIN6 (VND6), a master regulator of TEs, regulates some of the downstream genes involved in these processes in a coordinated manner. We first identified genes that are expressed downstream of VND6 but not downstream of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, using transformed suspension culture cells in microarray experiments. We found that VND6 and SND1 governed distinct aspects of xylem formation, whereas they regulated a number of genes in common, specifically those related to secondary cell wall formation. Genes involved in TE-specific PCD were upregulated only by VND6. Moreover, we revealed that VND6 directly regulated genes that harbor a TE-specific cis-element, TERE, in their promoters. Thus, we found that VND6 is a direct regulator of genes related to PCD as well as to secondary wall formation.


Assuntos
Apoptose/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Xilema/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Parede Celular/genética , Células Cultivadas , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo , Xilema/genética
14.
Nat Commun ; 14(1): 6987, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957173

RESUMO

Properly patterned deposition of cell wall polymers is prerequisite for the morphogenesis of plant cells. A cortical microtubule array guides the two-dimensional pattern of cell wall deposition. Yet, the mechanism underlying the three-dimensional patterning of cell wall deposition is poorly understood. In metaxylem vessels, cell wall arches are formed over numerous pit membranes, forming highly organized three-dimensional cell wall structures. Here, we show that the microtubule-associated proteins, MAP70-5 and MAP70-1, regulate arch development. The map70-1 map70-5 plants formed oblique arches in an abnormal orientation in pits. Microtubules fit the aperture of developing arches in wild-type cells, whereas microtubules in map70-1 map70-5 cells extended over the boundaries of pit arches. MAP70 caused the bending and bundling of microtubules. These results suggest that MAP70 confines microtubules within the pit apertures by altering the physical properties of microtubules, thereby directing the growth of pit arches in the proper orientation. This study provides clues to understanding how plants develop three-dimensional structure of cell walls.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Parede Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Xilema/metabolismo
15.
Sci Rep ; 13(1): 2554, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781988

RESUMO

Insect galls are abnormal plant organs formed by gall-inducing insects to provide shelter and nutrients for themselves. Although insect galls are spatialized complex structures with unique shapes and functions, the molecular mechanism of the gall formation and the screening system for the gall inducing effectors remains unknown. Here, we demonstrate that an extract of a gall-inducing aphid, Schlechtendalia chinensis, induces an abnormal structure in the root-tip region of Arabidopsis seedlings. The abnormal structure is composed of stem-like cells, vascular, and protective tissues, as observed in typical insect galls. Furthermore, we confirm similarities in the gene expression profiles between the aphid-treated seedlings and the early developmental stages of Rhus javanica galls formed by S. chinensis. Based on the results, we propose a model system for analyzing the molecular mechanisms of gall formation: the Arabidopsis-based Gall-Forming Assay (Ab-GALFA). Ab-GALFA could be used not only as a model to elucidate the mechanisms underlying gall formation, but also as a bioassay system to isolate insect effector molecules of gall-induction.


Assuntos
Afídeos , Arabidopsis , Animais , Arabidopsis/genética , Insetos/genética , Afídeos/genética , Transcriptoma , Tumores de Planta/genética
16.
Plant J ; 66(4): 629-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21294795

RESUMO

The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Mitose , Membrana Nuclear/metabolismo , Raízes de Plantas/metabolismo , Agrobacterium tumefaciens , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/genética , Citoplasma/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Microscopia Confocal , Microtúbulos/metabolismo , Raízes de Plantas/citologia , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
17.
Methods Mol Biol ; 2382: 225-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34705242

RESUMO

Phragmoplasts are plant-specific microtubule structures that form cell plates at the cell division plane. During late anaphase, phragmoplasts emerge between daughter nuclei as the derivative of spindle microtubules, and centrifugally expand toward the cell cortex to build cell plates during telophase. Phragmoplasts are composed of short antiparallel microtubules decorated with various microtubule-associated proteins. Mutants of these microtubule-associated proteins exhibit defects in phragmoplast morphology. Quantification of phragmoplast morphology is indispensable for assessing the phenotypes of these mutants. Here, we describe a method to quantify the width of phragmoplasts.


Assuntos
Microtúbulos , Anáfase , Citocinese , Proteínas Associadas aos Microtúbulos/genética , Mitose
18.
Open Biol ; 12(5): 210208, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506204

RESUMO

All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.


Assuntos
Parede Celular , Xilema , Membrana Celular/metabolismo , Parede Celular/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismo , Água/metabolismo , Xilema/metabolismo
19.
Science ; 374(6575): eaba5531, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941412

RESUMO

In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Floema/citologia , Floema/crescimento & desenvolvimento , Raízes de Plantas/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciação Celular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Meristema/citologia , Floema/genética , Floema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição/genética , Transcriptoma
20.
Front Plant Sci ; 11: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153602

RESUMO

In Arabidopsis thaliana, the vacuolar proton-pumping pyrophosphatase (H+-PPase) is highly expressed in young tissues, which consume large amounts of energy in the form of nucleoside triphosphates and produce pyrophosphate (PPi) as a byproduct. We reported that excess PPi in the H+-PPase loss-of-function fugu5 mutant severely compromised gluconeogenesis from seed storage lipids, arrested cell division in cotyledonary palisade tissue, and triggered compensated cell enlargement; this phenotype was recovered upon sucrose supply. Thus, we provided evidence that the hydrolysis of inhibitory PPi, rather than vacuolar acidification, is the major contribution of H+-PPase during seedling establishment. Here, examination of the epidermis revealed that fugu5 pavement cells exhibited defective puzzle-cell formation. Importantly, removal of PPi from fugu5 background by the yeast cytosolic PPase IPP1, in fugu5-1 AVP1pro::IPP1 transgenic lines, restored the phenotypic aberrations of fugu5 pavement cells. Surprisingly, pavement cells in mutants with defects in gluconeogenesis (pck1-2) or the glyoxylate cycle (icl-2; mls-2) showed no phenotypic alteration, indicating that reduced sucrose production from seed storage lipids is not the cause of fugu5 epidermal phenotype. fugu5 had oblong cotyledons similar to those of angustifolia-1 (an-1), whose leaf pavement cells display an abnormal arrangement of cortical microtubules (MTs). To gain insight into the genetic interaction between ANGUSTIFOLIA and H+-PPase in pavement cell differentiation, an-1 fugu5-1 was analyzed. Surprisingly, epidermis developmental defects were synergistically enhanced in the double mutant. In fact, an-1 fugu5-1 pavement cells showed a striking three-dimensional growth phenotype on both abaxial and adaxial sides of cotyledons, which was recovered by hydrolysis of PPi in an-1 fugu5-1 AVP1pro::IPP1. Live imaging revealed that cortical MTs exhibited a reduced velocity, were slightly fragmented and sparse in the above lines compared to the WT. Consistently, addition of PPi in vitro led to a dose-dependent delay of tubulin polymerization, thus supporting a link between PPi and MT dynamics. Moreover, mathematical simulation of three-dimensional growth based on cotyledon proximo-distal and medio-lateral phenotypic quantification implicated restricted cotyledon expansion along the medio-lateral axis in the crinkled surface of an-1 fugu5-1. Together, our data suggest that PPi homeostasis is a prerequisite for proper pavement cell morphogenesis, epidermal growth and development, and organ flattening.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa