Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Bone Miner Metab ; 39(2): 148-159, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32844318

RESUMO

INTRODUCTION: Mechanical stimuli regulate Sclerostin (Scl), a negative regulator of bone formation, expression in osteocytes. However, the detailed Scl distribution in osteocytes in response to mechanical unloading remains unclear. MATERIALS AND METHODS: Twelve-week-old male rats were used. The sciatic and femoral nerves on the right side were excised as mechanical unloading treatment. A sham operation was performed on the left side. One week after neurotrauma, the bone density of the femora was evaluated by peripheral quantitative computed tomography, and immunofluorescence was performed in coronal sections of the femoral diaphysis. The mean fluorescence intensity and fluorescent profile of Scl from the marrow to the periosteal side were analyzed to estimate the Scl expression and determine to which side (marrow or periosteal) the Scl prefers to distribute in response to mechanical unloading. The most sensitive region indicated by the immunofluorescence results was further investigated by transmission electron microscopy (TEM) with immunogold staining to show the Scl expression changes in different subcellular structures. RESULTS: In femur distal metaphysis, neurotrauma-induced mechanical unloading significantly decreased the bone density, made the distribution of Scl closer to the marrow on the anterior and medial side, and increased the Scl expression only on the lateral side. TEM findings showed that only the expression of Scl in canaliculi was increased by mechanical unloading. CONCLUSIONS: Our results showed that even short-term mechanical unloading is enough to decrease bone density, and mechanical unloading not only regulated the Scl expression but also changed the Scl distribution in both the osteocyte network and subcellular structures.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Osteócitos/metabolismo , Estresse Mecânico , Animais , Densidade Óssea , Diáfises/diagnóstico por imagem , Diáfises/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Fêmur/ultraestrutura , Marcadores Genéticos , Masculino , Osteócitos/ultraestrutura , Osteogênese , Periósteo/diagnóstico por imagem , Periósteo/patologia , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X
2.
FASEB J ; 33(9): 10409-10424, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238000

RESUMO

Human periodontal ligament (hPDL) fibroblasts are thought to receive mechanical stress (MS) produced by orthodontic tooth movement, thereby regulating alveolar bone remodeling. However, the role of intracellular calcium ([Ca2+]i)-based mechanotransduction is not fully understood. We explored the MS-induced [Ca2+]i responses both in isolated hPDL fibroblasts and in intact hPDL tissue and investigated its possible role in alveolar bone remodeling. hPDL fibroblasts were obtained from healthy donors' premolars that had been extracted for orthodontic reasons. The oscillatory [Ca2+]i activity induced by static compressive force was measured by a live-cell Ca2+ imaging system and evaluated by several feature extraction method. The spatial pattern of cell-cell communication was investigated by Moran's I, an index of spatial autocorrelation and the gap junction (GJ) inhibitor. The Ca2+-transporting ionophore A23187 was used to further investigate the role of [Ca2+]i up-regulation in hPDL cell behavior. hPDL fibroblasts displayed autonomous [Ca2+]i responses. Compressive MS activated this autonomous responsive behavior with an increased percentage of responsive cells both in vitro and ex vivo. The integration, variance, maximum amplitude, waveform length, and index J in the [Ca2+]i responses were also significantly increased, whereas the mean power frequency was attenuated in response to MS. The increased Moran's I after MS indicated that MS might affect the pattern of cell-cell communication via GJs. Similar to the findings of MS-mediated regulation, the A23187-mediated [Ca2+]i uptake resulted in the up-regulation of receptor activator of NF-κB ligand (Rankl) and Sost along with increased sclerostin immunoreactivity, suggesting that [Ca2+]i signaling networks may be involved in bone remodeling. In addition, A23187-treated hPDL fibroblasts also showed the suppression of osteogenic differentiation and mineralization. Our findings suggest that augmented MS-mediated [Ca2+]i oscillations in hPDL fibroblasts enhance the production and release of bone regulatory signals via Rankl/Osteoprotegerin and the canonical Wnt/ß-catenin pathway as an early process in tooth movement-initiated alveolar bone remodeling.-Ei Hsu Hlaing, E., Ishihara, Y., Wang, Z., Odagaki, N., Kamioka, H. Role of intracellular Ca2+-based mechanotransduction of human periodontal ligament fibroblasts.


Assuntos
Cálcio/metabolismo , Comunicação Celular , Fibroblastos/fisiologia , Mecanotransdução Celular , Osteogênese , Ligamento Periodontal/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Fibroblastos/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ligamento Periodontal/citologia , Transdução de Sinais , Análise Espaço-Temporal , Estresse Mecânico
3.
Am J Orthod Dentofacial Orthop ; 158(6): e151-e160, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33139146

RESUMO

INTRODUCTION: The Wnt signaling pathway acts as a key regulator of skeletal development and its homeostasis. However, the potential role of Wnt1 in the mechanotransduction machinery of orthodontic tooth movement-initiated bone remodeling is still unclear. Hence, this study focused on the regulatory dynamics of the Wnt1 expression in both the periodontal ligament (PDL) and osteocytes in vivo and in vitro. METHODS: The Wnt1 expression in the orthodontically moved maxillary first molar in mice was assessed at 0, 1, and 5 days, on both the compression and tension sides. Primary isolated human PDL (hPDL) fibroblasts, as well as murine long-bone osteocyte-Y4 (MLO-Y4) cells, were exposed to continuous compressive force and static tensile force. RESULTS: The relative quantification of immunodetection showed that orthodontic tooth movement significantly stimulated the Wnt1 expression in both the PDL and alveolar osteocytes on the tension side on day 5, whereas the expression on the compression side did not change. This increase in the Wnt1 expression, shown in vivo, was also noted after the application of 12% static tensile force in isolated hPDL fibroblasts and 20% in MLO-Y4 cells. In contrast, a compressive force led to the attenuation of the Wnt1 gene expression in both hPDL fibroblasts and MLO-Y4 cells in a force-dependent manner. In the osteocyte-PDL coculture system, recombinant sclerostin attenuated Wnt1 in PDL, whereas the antisclerostin antibody upregulated its gene expression, indicating that mechanically-driven Wnt1 signaling in PDL might be regulated by osteocytic sclerostin. CONCLUSIONS: Our findings provide that Wnt1 signaling plays a vital role in tooth movement-initiated bone remodeling via innovative mechanotransduction approaches.


Assuntos
Mecanotransdução Celular , Técnicas de Movimentação Dentária , Animais , Remodelação Óssea , Camundongos , Osteócitos , Ligamento Periodontal , Estresse Mecânico , Proteína Wnt1/genética
4.
J Bone Miner Metab ; 37(4): 614-626, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30413886

RESUMO

This study aimed to predict the key genes and pathways that are activated when different types of mechanical loading are applied to osteocytes. mRNA expression datasets (series number of GSE62128 and GSE42874) were obtained from Gene Expression Omnibus database (GEO). High gravity-treated osteocytic MLO-Y4 cell-line samples from GSE62128 (Set1), and fluid flow-treated MLO-Y4 samples from GSE42874 (Set2) were employed. After identifying the differentially expressed genes (DEGs), functional enrichment was performed. The common DEGs between Set1 and Set2 were considered as key DEGs, then a protein-protein interaction (PPI) network was constructed using the minimal nodes from all of the DEGs in Set1 and Set2, which linked most of the key DEGs. Several open source software programs were employed to process and analyze the original data. The bioinformatic results and the biological meaning were validated by in vitro experiments. High gravity and fluid flow induced opposite expression trends in the key DEGs. The hypoxia-related biological process and signaling pathway were the common functional enrichment terms among the DEGs from Set1, Set2 and the PPI network. The expression of almost all the key DEGs (Pdk1, Ccng2, Eno2, Egln1, Higd1a, Slc5a3 and Mxi1) were mechano-sensitive. Eno2 was identified as the hub gene in the PPI network. Eno2 knockdown results in expression changes of some other key DEGs (Pdk1, Mxi1 and Higd1a). Our findings indicated that the hypoxia response might have an important role in the differential responses of osteocytes to the different types of mechanical force.


Assuntos
Biologia Computacional/métodos , Estudos de Associação Genética , Osteócitos/metabolismo , Transdução de Sinais/genética , Estresse Mecânico , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Mecanotransdução Celular/genética , Camundongos , Mapas de Interação de Proteínas/genética
5.
J Bone Miner Metab ; 36(5): 519-528, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29027020

RESUMO

Osteocytes form a three-dimensional (3D) cellular network within the mineralized bone matrix. The cellular network has important roles in mechanosensation and mechanotransduction related to bone homeostasis. We visualized the embedded osteocyte network in chick calvariae and observed the flow-induced Ca2+ signaling in osteocytes using 3D time-lapse imaging. In response to the flow, intracellular Ca2+ ([Ca2+]i) significantly increased in developmentally mature osteocytes in comparison with young osteocytes in the bone matrix. To investigate the differences in response between young and developmentally mature osteocytes in detail, we evaluated the expression of osteocyte-related genes using the osteocyte-like cell line MLO-Y4, which was 3D-cultured within type I collagen gels. We found that the c-Fos, Cx43, Panx3, Col1a1, and OCN mRNA levels significantly increased on day 15 in comparison with day 7. These findings indicate that developmentally mature osteocytes are more responsive to mechanical stress than young osteocytes and have important functions in bone formation and remodeling.


Assuntos
Cálcio/metabolismo , Osteócitos/metabolismo , Crânio/anatomia & histologia , Crânio/metabolismo , Imagem com Lapso de Tempo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/genética , Linhagem Celular , Forma Celular , Embrião de Galinha , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imageamento Tridimensional , Mecanotransdução Celular/fisiologia , Camundongos , Osteócitos/citologia , Estresse Mecânico
6.
Am J Orthod Dentofacial Orthop ; 154(5): 718-732, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30384943

RESUMO

Prader-Willi syndrome (PWS) is a complex disorder that affects multiple systems and may cause craniofacial and dentofacial abnormalities. However, there is still a lack of evidence in the literature regarding the progress of orthodontic treatment in patients with PWS. This case report describes the successful orthodontic treatment of a patient with PWS. A girl, 9 years 0 months of age, who had been diagnosed with PWS had protruding maxillary incisors and a convex profile. Her malocclusion was due to the posteriorly positioned mandible. Screening tests for sleep apnea syndrome showed that she had sleep-disordered breathing, including obstructive sleep apnea and bruxism. We also observed an excessive overjet of 10.0 mm, a deep overbite of 6.8 mm, and the congenital absence of the mandibular second premolars. The patient was diagnosed with an Angle Class II malocclusion and a skeletal Class II jaw-base relationship with a deep overbite. Functional appliance therapy with mandibular advancement, which can enlarge the upper airway and increase the upper airspace, was performed to prevent further deterioration of the patient's obstructive sleep apnea. An acceptable occlusion with a proper facial profile and functional excursion were achieved without interference after comprehensive 2-stage treatment that incorporated orthodontic therapy for the patient's excessive overjet and deep overbite. The resulting occlusion was stable, and the occlusal force and the contact area gradually increased over a 2-year retention period. These results suggest that orthodontic treatment offers the opportunity to greatly improve the health and quality of life of people with PWS.


Assuntos
Aparelhos Ortodônticos Funcionais , Sobremordida/etiologia , Sobremordida/terapia , Síndrome de Prader-Willi/complicações , Anodontia/complicações , Dente Pré-Molar , Criança , Feminino , Humanos , Avanço Mandibular , Sobremordida/diagnóstico , Qualidade de Vida , Apneia Obstrutiva do Sono/etiologia , Bruxismo do Sono/etiologia , Resultado do Tratamento
8.
PeerJ ; 8: e10244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240612

RESUMO

BACKGROUND: In this study, we investigated the effect of the mechanical loading history on the expression of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in MLO-Y4 osteocyte-like cells. METHODS: Three hours after MLO-Y4 osteocytes were seeded, a continuous compressive force (CCF) of 31 dynes/cm2 with or without additional CCF (32 dynes/cm2) was loaded onto the osteocytes. After 36 h, the additional CCF (loading history) was removed for a recovery period of 10 h. The expression of RANKL, OPG, RANKL/OPG ratio, cell numbers, viability and morphology were time-dependently examined at 0, 3, 6 and 10 h. Then, the same additional CCF was applied again for 1 h to all osteocytes with or without the gap junction inhibitor to examine the expression of RANKL, OPG, the RANKL/OPG ratio and other genes that essential to characterize the phenotype of MLO-Y4 cells. Fluorescence recovery after photobleaching technique was also applied to test the differences of gap-junctional intercellular communications (GJIC) among MLO-Y4 cells. RESULTS: The expression of RANKL and OPG by MLO-Y4 osteocytes without a loading history was dramatically decreased and increased, respectively, in response to the 1-h loading of additional weight. However, the expression of RANKL, OPG and the RANKL/OPG ratio were maintained at the same level as in the control group in the MLO-Y4 osteocytes with a loading history but without gap junction inhibitor treatment. Treatment of loading history significantly changed the capacity of GJIC and protein expression of connexin 43 (Cx43) but not the mRNA expression of Cx43. No significant difference was observed in the cell number or viability between the MLO-Y4 osteocyte-like cells with and without a loading history or among different time checkpoints during the recovery period. The cell morphology showed significant changes and was correlated with the expression of OPG, Gja1 and Dmp1 during the recovery period. CONCLUSION: Our findings indicated that the compressive force-induced changes in the RANKL/OPG expression could be habituated within at least 11 h by 36-h CCF exposure. GJIC and cell morphology may play roles in response to loading history in MLO-Y4 osteocyte-like cells.

9.
Integr Biol (Camb) ; 9(11): 868-875, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29091092

RESUMO

The collagen network acts as a scaffold for calcification and its three-dimensional structure influences bone strength. It is therefore important to observe the collagen network in detail and three-dimensionally. In this study, we observed the collagen network of chick embryonic calvariae in membranous bone three-dimensionally using orthogonally arranged FIB-SEM. A 25 × 25 µm area of chick embryonic calvaria was observed at a high resolution (25 nm per pixel). The inside of the bone (i.e. the primary calcified tissue), the bone cells (i.e. the osteoblasts and the osteocytes), the organelles, and the collagen fibrils were observed in detail. These structures were observed three-dimensionally using the Amira software program. In addition, the collagen fibrils of the bone were automatically extracted using the XTracing extension software program, and three-dimensional morphometry was performed. Almost all of the collagen fibrils ran along the longitudinal axis of the trabecular bone. We found that the regularity of the collagen fibril orientation was less remarkable in the osteoblast layer, which contained numerous osteoblasts. The collagen fibril orientation started to show regularity toward the central bone layer, which contained few bone cells.


Assuntos
Osso e Ossos/metabolismo , Colágeno/química , Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Osteócitos/metabolismo , Animais , Calcificação Fisiológica , Embrião de Galinha , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Software
10.
Bone ; 91: 20-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27373501

RESUMO

INTRODUCTION: The intercellular network of cell-cell communication among osteocytes is mediated by gap junctions. Gap junctional intercellular communication (GJIC) is thought to play an important role in the integration and synchronization of bone remodeling. To further understand the mechanism of bone development it is important to quantify the difference in the GJIC capacity of young and developmentally mature osteocytes. MATERIALS AND METHODS: We first established an embryonic chick calvaria growth model to show the growth of the calvaria in embryos at 13 to 21days of age. We then applied a fluorescence recovery after photobleaching (FRAP) technique to compare the difference in the GJIC capacity of young osteocytes with that of developmentally mature osteocytes. Finally, we quantified the dye (Calcein) diffusion from the FRAP data using a mathematic model of simple diffusion which was also used to identify simple diffusion GJIC pattern cells (fitted model) and accelerated diffusion GJIC pattern cells (non-fitted model). RESULTS: The relationship between the longest medial-lateral length of the calvaria (frontal bone) and the embryonic age fit a logarithmic growth model: length=5.144×ln(day)-11.340. The morphometric data during osteocyte differentiation showed that the cellular body becomes more spindle-shaped and that the cell body volume decreased by approximately 22% with an increase in the length of the processes between the cells. However, there were no significant differences in the cellular body surface area or in the distance between the mass centres of the cells. The dye-displacement rate in young osteocytes was significantly higher than that in developmentally mature osteocytes: dye displacement only occurred in 26.88% of the developmentally mature osteocytes, while it occurred in 64.38% of the young osteocytes. Additionally, in all recovered osteocytes, 36% of the developmentally mature osteocytes comprised non-fitted model cells while 53.19% of the young osteocytes were the non-fitted model, which indicates the active transduction of dye molecules. However, there were no statistically significant differences between the young and developmentally mature osteocytes with regard to the diffusion coefficient, permeability coefficient, or permeance of the osteocyte processes, which were 3.93±3.77 (×10(-8)cm(2)/s), 5.12±4.56 (×10(-5)cm(2)/s) and 2.99±2.47 (×10(-13)cm(2)/s) (mean±SD), respectively. CONCLUSIONS: These experiments comprehensively quantified the GJIC capacity in the embryonic chick calvaria and indicated that the cell-cell communication capacity of the osteocytes in the embryonic chick calvaria was related to their development.


Assuntos
Comunicação Celular , Diferenciação Celular , Junções Comunicantes/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Crânio/citologia , Crânio/embriologia , Animais , Permeabilidade da Membrana Celular , Embrião de Galinha , Recuperação de Fluorescência Após Fotodegradação , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa