RESUMO
A large percentage of native grassland ecosystems have been severely degraded as a result of urbanization and intensive commercial agriculture. Extensive nitrogen-based fertilization regimes are widely used to rehabilitate and boost productivity in these grasslands. As a result, modern management frameworks rely heavily on detailed and accurate information on vegetation condition to monitor the success of these interventions. However, in high-density environments, biomass signal saturation has hampered detailed monitoring of rangeland condition. This issue stems from traditional broad-band vegetation indices (such as NDVI) responding to high levels of photosynthetically active radiation (PAR) absorption by leaf chlorophyll, which affects leaf area index (LAI) sensitivity within densely vegetative regions. Whilst alternate hyperspectral solutions may alleviate the problem to a certain degree, they are often too costly and not readily available within developing regions. To this end, this study evaluated the use of high-resolution Worldview-3 imagery in combination with modified NDVI indices and image manipulation techniques in reducing the effects of biomass signal saturation within a complex tropical grassland. Using the random forest algorithm, several modified NDVI-type indices were developed from all potential dual-band combinations of the Worldview-3 image. Thereafter, linear contrast stretching and histogram equalization were implemented in conjunction with Singular Value Decomposition (SVD) to improve high-density biomass estimation. Results demonstrated that both contrast enhancement techniques, when combined with SVD, improved high-density biomass estimation. However, linear contrast stretching, SVD, and modified NDVI indices developed from the red (630-690 nm), green (510-580 nm), and near-infrared 1 (770-895 nm) bands were found to produce the best biomass predictive model (R2 = 0.71, RMSE = 0.40 kg/m2). The results generated from this research offer a means to alleviate the biomass saturation problem. This framework provides a platform to assist rangeland managers in regionally assessing changes in vegetation condition within high-density grasslands.
Assuntos
Ecossistema , Pradaria , Biomassa , Monitoramento Ambiental/métodos , Folhas de PlantaRESUMO
The use of neural network (NN) models for remote sensing (RS) retrieval of landscape biophysical and biochemical properties has become popular in the last decade. Recently, the emergence of "big data" that can be generated from remotely sensed data and innovative machine learning (ML) approaches have provided a platform for novel analytical approaches. Specifically, the advent of deep learning (DL) frameworks developed from traditional neural networks (TNN) offer unprecedented opportunities to improve the accuracy of SOC retrievals from remotely sensed imagery. This review highlights the use of TNN models and their evolution into DL architectures in remote sensing of SOC estimation. The review also highlights the application of DL, with a specific focus on its development and adoption in remote sensing of SOC mapping. The review concludes by highlighting future opportunities for the use of DL frameworks for the retrieval of SOC from remotely sensed data.
Assuntos
Aprendizado Profundo , Solo , Carbono/análise , Monitoramento Ambiental , Tecnologia de Sensoriamento RemotoRESUMO
Farm dams, also known as 'agricultural ponds', are ubiquitous features of agricultural landscapes globally. Those accessed by livestock have high methane (CH4) emissions per unit area relative to other freshwater systems. Fencing dams and installing water troughs to prevent livestock from entering the dams are promising strategies to improve water quality and substantially reduce their carbon footprints. However, previous studies only measured the effects of fencing on methane diffusive emissions without considering ebullitive fluxes (i.e., methane bubbles), which is often the dominant emission pathway in smaller water bodies. Also, data is lacking on how the benefits of fencing farm dams vary across seasons. Using Australia as a test case, this study investigates the benefit of fencing off farm dams by monitoring total CH4 (diffusion + ebullition) and carbon dioxide (CO2) in summer and winter. Fenced dams had 72 % lower CH4 emissions in summer and 92 % lower in winter than unfenced dams. Similarly, CO2-equivalent (CO2 + CH4) fluxes were lower in fenced dams by 59 % in summer and 73 % in winter. Fenced dams had higher water quality, with 51 % less total dissolved nitrogen, 57 % less phosphorous, and 23-49 % more dissolved oxygen. Average daily air temperature was a key predictor of CH4 emissions from farm dams, underscoring the importance of considering temporal dynamics for estimating yearly farm dam emissions. We confirmed that excluding livestock from entering farm dams using fences significantly mitigates CH4 emissions and enhances water quality, and these benefits are maintained seasonally.
Assuntos
Poluentes Atmosféricos , Fazendas , Gado , Metano , Qualidade da Água , Metano/análise , Animais , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Austrália , Agricultura/métodos , Estações do Ano , Dióxido de Carbono/análiseRESUMO
Soil organic carbon (SOC) stocks are critical for land management strategies and climate change mitigation. However, understanding SOC distribution in South Africa's arid and semi-arid regions remains a challenge due to data limitations, and the complex spatial and sub-surface variability in SOC stocks driven by desertification and land degradation. Thus, to support soil and land-use management practices as well as advance climate change mitigation efforts, there is an urgent need to provide more precise SOC stock estimates within South Africa's arid and semi-arid regions. Hence, this study adopted remote-sensing approaches to determine the spatial sub-surface distribution of SOC stocks and the influence of environmental co-variates at four soil depths (i.e., 0-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm). Using two regression-based algorithms, i.e., Extreme Gradient Boosting (XGBoost) and Random Forest (RF), the study found the former (RMSE values ranging from 7.12 t/ha to 29.55 t/ha) to be a superior predictor of SOC in comparison to the latter (RMSE values ranging from 7.36 t/ha to 31.10 t/ha). Nonetheless, both models achieved satisfactory accuracy (R2 ≥ 0.52) for regional-scale SOC predictions at the studied soil depths. Thereafter, using a variable importance analysis, the study demonstrated the influence of climatic variables like rainfall and temperature on SOC stocks at different depths. Furthermore, the study revealed significant spatial variability in SOC stocks, and an increase in SOC stocks with soil depth. Overall, these findings enhance the understanding of SOC dynamics in South Africa's arid and semi-arid landscapes and emphasizes the importance of considering site specific topo-climatic characteristics for sustainable land management and climate change mitigation. Furthermore, the study offers valuable insights into sub-surface SOC distribution, crucial for informing carbon sequestration strategies, guiding land management practices, and informing environmental policies within arid and semi-arid environments.
RESUMO
The preservation and augmentation of soil organic carbon (SOC) stocks is critical to designing climate change mitigation strategies and alleviating global warming. However, due to the susceptibility of SOC stocks to environmental and topo-climatic variability and changes, it is essential to obtain a comprehensive understanding of the state of current SOC stocks both spatially and vertically. Consequently, to effectively assess SOC storage and sequestration capacity, precise evaluations at multiple soil depths are required. Hence, this study implemented an advanced Deep Neural Network (DNN) model incorporating Sentinel-1 Synthetic Aperture Radar (SAR) data, topo-climatic features, and soil physical properties to predict SOC stocks at multiple depths (0-30cm, 30-60cm, 60-100cm, and 100-200cm) across diverse land-use categories in the KwaZulu-Natal province, South Africa. There was a general decline in the accuracy of the DNN model's prediction with increasing soil depth, with the root mean square error (RMSE) ranging from 8.34 t/h to 11.97 t/h for the four depths. These findings imply that the link between environmental covariates and SOC stocks weakens with soil depth. Additionally, distinct factors driving SOC stocks were discovered in both topsoil and deep-soil, with vegetation having the strongest effect in topsoil, and topo-climate factors and soil physical properties becoming more important as depth increases. This underscores the importance of incorporating depth-related soil properties in SOC modelling. Grasslands had the largest SOC stocks, while commercial forests have the highest SOC sequestration rates per unit area. This study offers valuable insights to policymakers and provides a basis for devising regional management strategies that can be used to effectively mitigate climate change.
RESUMO
The management of soil organic carbon (SOC) stocks remains at the forefront of greenhouse gas mitigation. However, unprecedented anthropogenic disturbances emanating from continued land-use change have significantly altered SOC distribution across global biomes leading to considerable carbon losses. Consequently, understanding the spatial distribution of SOC across different biomes, particularly at larger scales, is critical for climate change policy formulation and planning. Advancements in remote sensing, availability of big data, and deep learning architecture offer great potential in large-scale SOC mapping. In this regard, this study mapped SOC distribution across South Africa's major biomes using remotely sensed-topo-climatic data and Concrete Autoencoder-Deep neural networks (CAE-DNN). From the different deep neural frameworks tested, the CAE-DNN model (developed from 26 selected covariates) achieved the best accuracy with an RMSE value of 7.91 t/ha (about 20 % of the mean). Results further showed that SOC stock correlated with general biome coverage, as the Grassland and Savanna biomes contributed the most (32.38 % and 31.28 %) to the overall SOC pool in South Africa. However, despite their smaller footprint, Forests (44.12 t/h) and the Indian Ocean Coastal Belt (43.05 t/h) biomes demonstrated the highest SOC sequestration capacity. The restoration of degraded biomes is advocated for, in order to boost SOC storage; but a balance between carbon sequestration capacity, biodiversity health, and the adequate provision of ecosystem services must be maintained. To this end, these findings provide a guideline to facilitate sustainable SOC stock management within South Africa's major biomes and indeed other regions of the world.