RESUMO
Introduction: This study aimed to delineate longitudinal antibody responses to the Pfizer-BioNTech BNT162b2 COVID-19 vaccine within the Ugandan subset of the Sub-Saharan African (SSA) demographic, filling a significant gap in global datasets. Methods: We enrolled 48 participants and collected 320 specimens over 12 months after the primary vaccination dose. A validated enzyme-linked immunosorbent assay (ELISA) was used to quantify SARS-CoV-2-specific IgG, IgM, and IgA antibody concentrations (ng/ml) and optical densities (ODs). Statistical analyses included box plots, diverging bar graphs, and the Wilcoxon test with Bonferroni correction. Results: We noted a robust S-IgG response within 14 days of the primary vaccine dose, which was consistent with global data. There was no significant surge in S-IgG levels after the booster dose, contrasting trends in other global populations. The S-IgM response was transient and predominantly below established thresholds for this population, which reflects its typical early emergence and rapid decline. S-IgA levels rose after the initial dose then decreased after six months, aligning with the temporal patterns of mucosal immunity. Eleven breakthrough infections were noted, and all were asymptomatic, regardless of the participants' initial S-IgG serostatus, which suggests a protective effect from vaccination. Discussion: The Pfizer-BioNTech BNT162b2 COVID-19 vaccine elicited strong S-IgG responses in the SSA demographic. The antibody dynamics distinctly differed from global data highlighting the significance of region-specific research and the necessity for customised vaccination strategies.
Assuntos
Imunoglobulina G , Vacinas , Humanos , Vacina BNT162 , Formação de Anticorpos , Vacinas contra COVID-19 , Uganda , Vacinação , Anticorpos Antivirais , Políticas , Imunoglobulina MRESUMO
Understanding SARS-CoV-2 vaccine-induced antibody responses in varied antigenic and serological prior exposures can guide optimal vaccination strategies for enhanced immunogenicity. We evaluated spike (S)-directed IgG, IgM, and IgA antibody optical densities (ODs) and concentrations to the two-dose ChAdOx1-S Oxford-AstraZeneca (ChAdOx1-S, Covishield) SARS-CoV-2 vaccine in 67 Ugandans, categorised by prior infection and baseline S-IgG histories: uninfected and S-IgG-negative (n = 12); previously infected yet S-IgG-negative (n = 17); and previously infected with S-IgG-positive status (n = 38). Antibody dynamics were compared across eight timepoints from baseline till nine months. S-IgG antibodies remained consistently potent across all groups. Individuals with prior infections maintained robust S-IgG levels, underscoring the endurance of hybrid immunity. In contrast, those without prior exposure experienced an initial surge in S-IgG after the primary dose but no subsequent significant increase post-boost. However, they reached levels parallel to the previously exposed groups. S-IgM levels remained moderate, while S-IgA persisted in individuals with prior antigen exposure. ChAdOx1-S, Covishield vaccine elicited robust and sustained antibody responses in recipients, irrespective of their initial immune profiles. Hybrid immunity showed higher responses, aligning with global observations. Early post-vaccination antibody levels could predict long-term immunity, particularly in individuals without virus exposure. These findings can inform vaccine strategies and pandemic management.
Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , ChAdOx1 nCoV-19 , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Masculino , Feminino , Adulto , ChAdOx1 nCoV-19/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Formação de Anticorpos/imunologia , Pessoa de Meia-Idade , Adulto Jovem , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Vacinação , População da África OrientalRESUMO
Introduction: This study sought to elucidate the long-term antibody responses to the Moderna mRNA-1273 COVID-19 vaccine within a Ugandan cohort, aiming to contribute to the sparse data on m-RNA vaccine immunogenicity in Sub-Saharan Africa. Methods: We tracked the development and persistence of the elicited antibodies in 19 participants aged 18 to 67, who received two doses of the mRNA-1273 vaccine. A validated enzyme-linked immunosorbent assay (ELISA) was used to quantify SARS-CoV-2-specific IgG, IgM, and IgA antibodies against the spike (S) and nucleoproteins (N). The study's temporal scope extended from the baseline to one year, capturing immediate and long-term immune responses. Statistical analyses were performed using the Wilcoxon test to evaluate changes in antibody levels across predetermined intervals with the Hochberg correction for multiple comparisons. Results: Our results showed a significant initial rise in spike-directed IgG (S-IgG) and spike-directed IgA (S-IgA) levels, which remained elevated for the duration of the study. The S-IgG concentrations peaked 14 days afterboosting, while spike-directed IgM (S-IgM) levels were transient, aligning with their early response role. Notably, post-booster antibody concentrations did not significantly change. Prior S-IgG status influenced the post-priming S-IgA dynamics, with baseline S-IgG positive individuals maintaining higher S-IgA responses, a difference that did not reach statistical difference post-boost. Three instances of breakthrough infections: two among participants who exhibited baseline seropositivity for S-IgG, and one in a participant initially seronegative for S-IgG. Discussion: In conclusion, the mRNA-1273 vaccine elicited robust and persistent S-IgG and S-IgA antibody responses, particularly after the first dose, indicating potential for long-term immunity. Prior viral exposure enhances post-vaccination S-IgA responses compared to naive individuals, which aligned with the prior-naïve, post-boost. The stable antibody levels observed post-booster dose, remaining high over an extended period, with no significant secondary rise, and no difference by baseline exposure, suggest that initial vaccination may sufficiently prime the immune system for prolonged protection in this population, allowing for potential to delay booster schedules as antibody responses remained high at the time of boosting. This finding calls for a reassessment of the booster dose scheduling in this demographic.
Assuntos
Imunoglobulina A , Vacinas de mRNA , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina MRESUMO
Introduction: The duration and timing of immunity conferred by COVID-19 vaccination in sub-Saharan Africa are crucial for guiding pandemic policy interventions, but systematic data for this region is scarce. This study investigated the antibody response after AstraZeneca vaccination in COVID-19 convalescent Ugandans. Methods: We recruited 86 participants with a previous rt-PCR-confirmed mild or asymptomatic COVID-19 infection and measured the prevalence and levels of spike-directed IgG, IgM, and IgA antibodies at baseline, 14 and 28 days after the first dose (priming), 14 days after the second dose (boosting), and at six- and nine-months post-priming. We also measured the prevalence and levels of nucleoprotein-directed antibodies to assess breakthrough infections. Results: Within two weeks of priming, vaccination substantially increased the prevalence and concentrations of spike-directed antibodies (p < 0.0001, Wilcoxon signed rank test), with 97.0% and 66% of vaccinated individuals possessing S-IgG and S-IgA antibodies before administering the booster dose. S-IgM prevalence changed marginally after the initial vaccination and barely after the booster, consistent with an already primed immune system. However, we also observed a rise in nucleoprotein seroprevalence, indicative of breakthroughs six months after the initial vaccination. Discussion: Our results suggest that vaccination of COVID-19 convalescent individuals with the AstraZeneca vaccine induces a robust and differential spike-directed antibody response. The data highlights the value of vaccination as an effective method for inducing immunity in previously infected individuals and the importance of administering two doses to maintain protective immunity. Monitoring anti-spike IgG and IgA when assessing vaccine-induced antibody responses is suggested for this population; assessing S-IgM will underestimate the response. The AstraZeneca vaccine is a valuable tool in the fight against COVID-19. Further research is needed to determine the durability of vaccine-induced immunity and the potential need for booster doses.
Assuntos
COVID-19 , Vacinas , Humanos , Formação de Anticorpos , Vacinas contra COVID-19 , Estudos Soroepidemiológicos , Uganda , COVID-19/epidemiologia , Vacinação , Imunoglobulina A , Nucleoproteínas , Imunoglobulina G , Imunoglobulina MRESUMO
Introduction: This study investigated the antibody responses to the inactivated COVID-19 vaccine, CoronaVac (Sinovac Biotech) in the African population to provide valuable insights into long-term immunity and breakthrough infections against SARS-CoV-2 in individuals with varying prior IgG seropositivity. Methods: Real-life cohorts were used to longitudinally track antibody levels against the SARS-CoV-2 spike and nucleoprotein in 60 participants over 12 months to examine the levels of multiple antibody isotypes (S-IgG, S-IgM, S-IgA, N-IgG, and N-IgM). Results: Throughout the 12 months, we observed consistently high and stable seropositivity rates for spike-IgG antibodies, spike-IgM antibodies showed a decline in frequencies over time, and spike-IgA levels remained moderate and stable. Vaccinated individuals previously positive for spike-IgG antibodies demonstrated strong and persistent seropositivity, while those initially negative experienced a gradual and delayed increase in seropositivity rates. The fold change analysis of S- and N- antibody responses demonstrated a consistently stable and comparable profile over time, indicating that vaccine-induced antibody responses remain constant and lack significant fluctuations beyond the initial boost. The study emphasized that individuals lacking previous IgG positivity showed reduced vaccine-induced spike-IgG antibodies and were more susceptible to breakthrough infections, highlighting their higher vulnerability. All cases of breakthrough infections were asymptomatic, indicating the conferred protection to the vaccinated individuals. Discussion: The findings corroborated earlier studies on the effectiveness of the CoronaVac vaccine and emphasized the significance of accounting for pre-existing seropositivity in vaccine assessments. This study effectively demonstrated durable antibody responses against SARS-CoV-2 in the African population following the CoronaVac vaccination, providing crucial insights for informing vaccination strategies and safeguarding vulnerable populations. Continuous surveillance is imperative for tracking breakthrough infections and monitoring waning immunity. The insights gained offer crucial direction for public health strategies and enhance comprehension of vaccine effectiveness in sub-Saharan Africa. Further research should explore functional outcomes, cellular immune responses, and the vaccine's effectiveness against different variants to enhance our understanding and optimize vaccine strategies.
Assuntos
Antígenos de Grupos Sanguíneos , Vacinas contra COVID-19 , Humanos , Infecções Irruptivas , Vacinação , Imunoglobulina G , Imunoglobulina M , África Subsaariana/epidemiologia , Imunoglobulina ARESUMO
Introduction: Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods: Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results: During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion: Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.
Assuntos
COVID-19 , Masculino , Feminino , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Uganda/epidemiologia , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M , Imunoglobulina ARESUMO
The penile epithelial microbiome remains underexplored. We sequenced human RNA and a segment of the bacterial 16S rRNA gene from the foreskin tissue of 144 adolescents from South Africa and Uganda collected during penile circumcision after receipt of 1-2 doses of placebo, emtricitabine + tenofovir disoproxil fumarate, or emtricitabine + tenofovir alafenamide to investigate the microbiome of foreskin tissue and its potential changes with antiretroviral use. We identified a large number of anaerobic species, including Corynebacterium acnes, which was detected more frequently in participants from South Africa than Uganda. Bacterial populations did not differ by treatment received, and no differentially abundant taxa were identified between placebo versus active drug recipients. The relative abundance of specific bacterial taxa was negatively correlated with expression of genes downstream of the innate immune response to bacteria and regulation of inflammation. Our results show no difference in the tissue microbiome of the foreskin with short-course antiretroviral use but that bacterial taxa were largely inversely correlated with inflammatory gene expression, consistent with commensal colonization.
RESUMO
Introduction: We investigated whether prior SARS-CoV-2-specific IFN-γ and antibody responses in Ugandan COVID-19 pre-pandemic specimens aligned to this population's low disease severity. Methods: We used nucleoprotein (N), spike (S), NTD, RBD, envelope, membrane, SD1/2-directed IFN-γ ELISpots, and an S- and N-IgG antibody ELISA to screen for SARS-CoV-2-specific cross-reactivity. Results: HCoV-OC43-, HCoV-229E-, and SARS-CoV-2-specific IFN-γ occurred in 23, 15, and 17 of 104 specimens, respectively. Cross-reactive IgG was more common against the nucleoprotein (7/110, 15.5%; p = 0.0016, Fishers' Exact) than the spike (3/110, 2.72%). Specimens lacking anti-HuCoV antibodies had higher rates of pre-epidemic SARS-CoV-2-specific IFN-γ cross-reactivity (p-value = 0.00001, Fishers' exact test), suggesting that exposure to additional factors not examined here might play a role. SARS-CoV-2-specific cross-reactive antibodies were significantly less common in HIV-positive specimens (p=0.017; Fishers' Exact test). Correlations between SARS-CoV-2- and HuCoV-specific IFN-γ responses were consistently weak in both HIV negative and positive specimens. Discussion: These findings support the existence of pre-epidemic SARS-CoV-2-specific cellular and humoral cross-reactivity in this population. The data do not establish that these virus-specific IFN-γ and antibody responses are entirely specific to SARS-CoV-2. Inability of the antibodies to neutralise SARS-CoV-2 implies that prior exposure did not result in immunity. Correlations between SARS-CoV-2 and HuCoV-specific responses were consistently weak, suggesting that additional variables likely contributed to the pre-epidemic cross-reactivity patterns. The data suggests that surveillance efforts based on the nucleoprotein might overestimate the exposure to SARS-CoV-2 compared to inclusion of additional targets, like the spike protein. This study, while limited in scope, suggests that HIV-positive people are less likely than HIV-negative people to produce protective antibodies against SARS-CoV-2.
Assuntos
COVID-19 , Soropositividade para HIV , Humanos , Pandemias , SARS-CoV-2 , Formação de Anticorpos , COVID-19/epidemiologia , Uganda/epidemiologia , Anticorpos Antivirais , ELISPOTRESUMO
BACKGROUND: The efficacy of on-demand HIV pre-exposure prophylaxis (PrEP) for men in sub-Saharan Africa has not been evaluated, and the on-demand PrEP dosing requirement for insertive sex remains unknown. METHODS: HIV-negative males 13-24 years, requesting voluntary medical male circumcision (VMMC), were enrolled into an open-label randomised controlled trial (NCT03986970), and randomised 1:1:1:1:1:1:1:1:1 to control arm or one of eight arms receiving emtricitabine-tenofovir disoproxil fumarate (F/TDF) or emtricitabine-tenofovir alafenamide (F/TAF) over one or two days, and circumcised 5 or 21 h thereafter. The primary outcome was foreskin p24 concentrations following ex vivo HIV-1BaL challenge. Secondary outcomes included peripheral blood mononuclear cell (PBMC) p24 concentration, and drug concentrations in foreskin tissue, PBMCs, plasma and foreskin CD4+/CD4-cells. In the control arm, post-exposure prophylaxis (PEP) activity of non-formulated tenofovir-emtricitabine (TFV-FTC) or TAF-FTC was assessed with ex vivo dosing 1, 24, 48 or 72 h post-HIV-1 challenge. FINDINGS: 144 participants were analysed. PrEP with F/TDF or F/TAF prevented ex vivo infection of foreskins and PBMCs both 5 and 21 h after PrEP dosing. There was no difference between F/TDF and F/TAF (p24day15 geometric mean ratio 1.06, 95% confidence interval: 0.65-1.74). Additional ex vivo dosing did not further increase inhibition. In the control arm, PEP ex vivo dosing was effective up to 48 post-exposure diminishing thereafter, with TAF-FTC showing prolonged protection compared to TFV-FTC. Participants receiving F/TAF had higher TFV-DP concentrations in foreskin tissue and PBMCs compared with F/TDF, irrespective of dose and sampling interval; but F/TAF did not confer preferential TFV-DP distribution into foreskin HIV target cells. FTC-TP concentrations with both drug regimens were equivalent and â¼1 log higher than TFV-DP in foreskin. INTERPRETATION: A double dose of either F/TDF or F/TAF given once either 5 or 21 h before ex vivo HIV-challenge provided protection across foreskin tissue. Further clinical evaluation of pre-coital PrEP for insertive sex is warranted. FUNDING: EDCTP2, Gilead Sciences, Vetenskapsrådet.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Masculino , Humanos , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/uso terapêutico , Leucócitos Mononucleares , Emtricitabina , África SubsaarianaRESUMO
OBJECTIVES: As topical pre-exposure prophylaxis (PrEP) has been shown to cause immune modulation in rectal or cervical tissue, our aim was to examine the impact of oral PrEP on lymphoid and myeloid changes in the foreskin in response to dosing and timing of drug administration. DESIGN: HIV-negative male individuals ( n â=â144) were recruited in South Africa and Uganda into an open-label randomized controlled trial in a 1â:â1â:â1â:â1â:â1â:â1â:â1â:â1â:â1 ratio to control arm (with no PrEP) or one of eight arms receiving emtricitabine-tenofovir disoproxil fumarate (F/TDF) or emtricitabine-tenofovir alafenamide (F/TAF) at one of two different doses, 5 or 21âh before undergoing voluntary medical male circumcision (VMMC). METHODS: After dorsal-slit circumcision, foreskin tissue sections were embedded into Optimal Cutting Temperature media and analysed, blinded to trial allocation, to determine numbers of CD4 + CCR5 + , CD1a + cells and claudin-1 expression. Cell densities were correlated with tissue-bound drug metabolites and p24 production after ex-vivo foreskin challenge with HIV-1 bal . RESULTS: There was no significant difference in CD4 + CCR5 + or CD1a + cell numbers in foreskins between treatment arms compared with the control arm. Claudin-1 expression was 34% higher ( P â=â0.003) in foreskin tissue from participants receiving PrEP relative to controls, but was no longer statistically significant after controlling for multiple comparisons. There was neither correlation of CD4 + CCR5 + , CD1a + cell numbers, or claudin-1 expression with tissue-bound drug metabolites, nor with p24 production after ex-vivo viral challenge. CONCLUSION: Oral doses and timing of on-demand PrEP and in-situ drug metabolite levels in tissue have no effect on numbers or anatomical location of lymphoid or myeloid HIV target cells in foreskin tissue.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Masculino , Humanos , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Prepúcio do Pênis , Claudina-1 , Emtricitabina/uso terapêuticoRESUMO
HIV-1 pre-exposure prophylaxis (PrEP) relies on inhibition of HIV-1 replication steps. To understand how PrEP modulates the immunological environment, we derived the plasma proteomic profile of men receiving emtricitabine-tenofovir (FTC-TDF) or emtricitabine-tenofovir alafenamide (FTC-TAF) during the CHAPS trial in South Africa and Uganda (NCT03986970). The CHAPS trial randomized 144 participants to one control and 8 PrEP arms, differing by drug type, number of PrEP doses and timing from final PrEP dose to sampling. Blood was collected pre- and post-PrEP. The inflammatory profile of plasma samples was analyzed using Olink (N=92 proteins) and Luminex (N=33) and associated with plasma drug concentrations using mass spectrometry. The proteins whose levels changed most significantly from pre- to post-PrEP were CCL4, CCL3 and TNF-α; CCL4 was the key discriminator between pre- and post-PrEP samples. CCL4 and CCL3 levels were significantly increased in post-PrEP samples compared to control specimens. CCL4 was significantly correlated with FTC drug levels in plasma. Production of inflammatory chemokines CCL4 and CCL3 in response to short-term PrEP indicates the mobilization of ligands which potentially block virus attachment to CCR5 HIV-1 co-receptor. The significant correlation between CCL4 and FTC levels suggests that CCL4 increase is modulated as an inflammatory response to PrEP.
Assuntos
Fármacos Anti-HIV , Quimiocina CCL4 , Emtricitabina , Infecções por HIV , Soropositividade para HIV , Profilaxia Pré-Exposição , Fármacos Anti-HIV/administração & dosagem , Quimiocina CCL3 , Quimiocina CCL4/efeitos dos fármacos , Emtricitabina/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1 , Humanos , Masculino , Profilaxia Pré-Exposição/métodos , Proteômica , África do SulRESUMO
Whilst short-term oral pre-exposure prophylaxis (PrEP) with antiretroviral drugs in men who have sex with men has shown protection against HIV-1 infection, the impact of this regimen on the in vivo foreskin transcriptome is unknown. We collected foreskin tissue after voluntary medical male circumcision from 144 young men (72 from Uganda and 72 from South Africa) randomized to one to two doses of either oral tenofovir (TFV) disoproxil fumarate (FTC-TDF) or tenofovir alafenamide (FTC-TAF) or no drug (untreated controls). This novel approach allowed us to examine the impact of short-term oral PrEP on transcriptome of the male genital tract. A single dose of FTC-TDF did not affect the foreskin transcriptome in relation to control arm, however one dose of FTC-TAF induced upregulation of four genes AKAP8, KIAA0141, HSCB and METTL17. Following two doses of either FTC-TDF or FTC-TAF, there was an increase in 34 differentially expressed genes for FTC-TDF and 15 for FTC-TAF, with nine DEGs in common: KIAA0141, SAFB2, CACTIN, FXR2, AKAP8, HSCB, CLNS1A, DDX27 and DCAF15. Functional analysis of differentially expressed genes revealed modulation of biological processes related to mitochondrial stress (KIAA0141, HSCB and METTL17), anti-viral and anti-inflammatory pathways (CACTIN and AKAP8). Our results show that short-course on-demand oral PrEP in men modulates genes in foreskin tissue which are likely unfavorable to HIV acquisition and replication. We also describe an upregulated expression of genes involved in diverse mitochondria biology which may potentially result in worsened mitochondria-related. These results warrant further studies to assess the role of short-course and prolonged oral PrEP on biological processes of the foreskin mucosa.