Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Kidney Dis ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815646

RESUMO

RATIONALE & OBJECTIVE: Biomarkers that enable better identification of persons with chronic kidney disease (CKD) who are at higher risk for disease progression and adverse events are needed. This study sought to identify urine and plasma metabolites associated with progression of kidney disease. STUDY DESIGN: Prospective metabolome-wide association study. SETTING & PARTICIPANTS: Persons with CKD enrolled in the GCKD (German CKD) study with metabolite measurements, with external validation within the ARIC (Atherosclerosis Risk in Communities) Study. EXPOSURES: 1,513 urine and 1,416 plasma metabolites (Metabolon Inc) measured at study entry using untargeted mass spectrometry. OUTCOMES: Main end points were kidney failure (KF) and a composite kidney end point (CKE) of KF, estimated glomerular filtration rate<15mL/min/1.73m2, or a 40% decrease in estimated glomerular filtration rate. Death from any cause was a secondary end point. After a median of 6.5 years of follow-up, 500 persons had experienced KF, 1,083 had experienced the CKE, and 680 had died. ANALYTICAL APPROACH: Time-to-event analyses using multivariable proportional hazard regression models in a discovery-replication design with external validation. RESULTS: 5,088 GCKD study participants were included in analyses of urine metabolites, and 5,144 were included in analyses of plasma metabolites. Among 182 unique metabolites, 30 were significantly associated with KF, 49 with the CKE, and 163 with death. The strongest association with KF was observed for plasma hydroxyasparagine (HR, 1.95; 95% CI, 1.68-2.25). An unnamed metabolite measured in plasma and urine was significantly associated with KF, the CKE, and death. External validation of the identified associations of metabolites with KF or the CKE revealed directional consistency for 88% of observed associations. Selected associations of 18 metabolites with study outcomes have not been previously reported. LIMITATIONS: Use of observational data and semiquantitative metabolite measurements at a single time point. CONCLUSIONS: The observed associations between metabolites and KF, the CKE, or death in persons with CKD confirmed previously reported findings and also revealed several associations not previously described. These findings warrant confirmatory research in other study cohorts. PLAIN-LANGUAGE SUMMARY: Incomplete understanding of the variability of chronic kidney disease (CKD) progression motivated the search for new biomarkers that would help identify people at increased risk. We explored metabolites in plasma and urine for their association with unfavorable kidney outcomes or death in persons with CKD. Metabolomic analyses revealed 182 metabolites significantly associated with CKD progression or death. Many of these associations confirmed previously reported findings or were validated by analysis in an external study population. Our comprehensive screen of the metabolome serves as a valuable foundation for future investigations into biomarkers associated with CKD progression.

2.
Haematologica ; 109(8): 2500-2514, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235501

RESUMO

D-2-hydroxyglutarate (D-2-HG) accumulates in patients with acute myeloid leukemia (AML) with mutated isocitrate dehydrogenase (IDH) and in other malignancies. D-2-HG suppresses antitumor T-cell immunity but little is known about potential effects on non-malignant myeloid cells. Here we show that D-2-HG impairs human but not murine dendritic cell differentiation, resulting in a tolerogenic phenotype with low major histocompatibility class II expression. In line with this, IDH-mutated AML blasts exhibited lower expression of HLA-DP and were less susceptible to lysis by HLA-DP-specific T cells. Interestingly, besides its expected impact on DNA demethylation, D-2-HG reprogrammed metabolism towards increased lactate production in dendritic cells and AML. Vitamin C accelerated DNA demethylation, but only the combination of vitamin C and glycolytic inhibition lowered lactate levels and supported major histocompatibility complex class II expression. Our results indicate an unexpected link between the immunosuppressive metabolites 2-HG and lactic acid and suggest a potentially novel therapeutic strategy with combinations of anti-glycolytic drugs and epigenetic modulators (hypomethylating agents) or other therapeutics for the treatment of AML.


Assuntos
Células Dendríticas , Glutaratos , Antígenos de Histocompatibilidade Classe II , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Glutaratos/metabolismo , Glutaratos/farmacologia , Camundongos , Animais , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Fenótipo , Diferenciação Celular/efeitos dos fármacos , Ácido Láctico/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Isocitrato Desidrogenase/genética
3.
Metabolites ; 14(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921481

RESUMO

It was pointed out to us that we had not followed exactly the IROA TruQuant IQQ Workflow Kit protocol in the experimental part of our work [...].

4.
Front Immunol ; 15: 1427457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156902

RESUMO

Aconitate decarboxylase-1 (ACOD1) is expressed by activated macrophages and generates itaconate that exerts anti-microbial and immunoregulatory effects. ACOD1-itaconate is essential for macrophage-mediated control of the intracellular pathogen Coxiella (C.) burnetii, which causes Q fever. Two isomers of itaconate, mesaconate and citraconate, have overlapping yet distinct activity on macrophage metabolism and inflammatory gene expression. Here, we found that all three isomers inhibited the growth of C. burnetii in axenic culture in ACCM-2 medium. However, only itaconate reduced C. burnetii replication efficiently in Acod1-/- macrophages. In contrast, addition of citraconate strongly increased C. burnetii replication in Acod1+/- macrophages, whereas mesaconate weakly enhanced bacterial burden in Acod1-/- macrophages. Analysis of intracellular isomers showed that exogenous citraconate and mesaconate inhibited the generation of itaconate by infected Acod1+/- macrophages. Uptake of added isomers into Acod1-/- macrophages was increased after infection for itaconate and mesaconate, but not for citraconate. Mesaconate, but not citraconate, competed with itaconate for uptake into macrophages. Taken together, inhibition of itaconate generation by macrophages and interference with the uptake of extracellular itaconate could be identified as potential mechanisms behind the divergent effects of citraconate and mesaconate on C. burnetii replication in macrophages or in axenic culture.


Assuntos
Cultura Axênica , Carboxiliases , Coxiella burnetii , Macrófagos , Succinatos , Coxiella burnetii/efeitos dos fármacos , Coxiella burnetii/crescimento & desenvolvimento , Succinatos/farmacologia , Animais , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Carboxiliases/metabolismo , Camundongos Knockout , Febre Q/imunologia , Febre Q/microbiologia , Camundongos Endogâmicos C57BL , Hidroliases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa