Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0300241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696384

RESUMO

OBJECTIVE: Technical ex-vivo comparison of commercial nebulizer nozzles used for Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC). METHODS: The performance of four different commercial nebulizer nozzles (Nebulizer; HurriChemTM; MCR-4 TOPOL®; QuattroJet) was analysed concerning: i) technical design and principle of operation, ii) operational pressure as function of the liquid flow rate, iii) droplet size distribution via laser diffraction spectrometry, iv) spray cone angle, spray cone form as well as horizontal drug deposition by image-metric analyses and v) chemical resistance via exposing to a cytostatic solution and chemical composition by means of spark optical emission spectral analysis. RESULTS: The Nebulizer shows quasi an identical technical design and thus also a similar performance (e.g., mass median droplet size of 29 µm) as the original PIPAC nozzles (MIP/ CapnoPen). All other nozzles show more or less a performance deviation to the original PIPAC nozzles. The HurriChemTM has a similar design and principle of operation as the Nebulizer, but provides a finer aerosol (22 µm). The principle of operation of MCR-4 TOPOL® and QuattroJet differ significantly from that of the original PIPAC nozzle technology. The MCR-4 TOPOL® offers a hollow spray cone with significantly larger droplets (50 µm) than the original PIPAC nozzles. The QuattroJet generates an aerosol (22 µm) similar to that of the HurriChemTM but with improved spatial drug distribution. CONCLUSION: The availability of new PIPAC nozzles is encouraging but can also have a negative impact if their performance and efficacy is unknown. It is recommended that PIPAC nozzles that deviate from the current standard should be subject to bioequivalence testing and implementation in accordance with the IDEAL-D framework prior to routine clinical use.


Assuntos
Aerossóis , Nebulizadores e Vaporizadores , Humanos , Antineoplásicos/administração & dosagem , Pressão , Tamanho da Partícula , Desenho de Equipamento
2.
Nanoscale ; 14(12): 4690-4704, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262538

RESUMO

We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.

3.
Integr Environ Assess Manag ; 13(3): 500-504, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28440940

RESUMO

The presence of microplastic (MP) in the aquatic environment is recognized as a global-scale pollution issue. Secondary MP particles result from an ongoing fragmentation process governed by various biotic and abiotic factors. For a reliable risk assessment of these MP particles, knowledge about interactions with biota is needed. However, extensive testing with standard organisms under reproducible laboratory conditions with well-characterized MP suspensions is not available yet. As MP in the environment represents a mixture of particles differing in properties (e.g., size, color, polymer type, surface characteristics), it is likely that only specific particle fractions pose a threat towards organisms. In order to assign hazardous effects to specific particle properties, these characteristics need to be analyzed. As shown by the testing of particles (e.g. nanoparticles), characteristics other than chemical properties are important for the emergence of toxicity in organisms, and parameters such as surface area or size distribution need consideration. Therefore, the use of "well-defined" particles for ecotoxicological testing (i.e., standard particles) facilitates the establishment of causal links between physical-chemical properties of MP particles and toxic effects in organisms. However, the benefits of well-defined particles under laboratory conditions are offset by the disadvantage of the unknown comparability with MP in the environment. Therefore, weathering effects caused by biological, chemical, physical or mechanical processes have to be considered. To date, the characterization of the progression of MP weathering based on powder and suspension characterization methods is in its infancy. The aim of this commentary is to illustrate the prerequisites for testing MP in the laboratory from 3 perspectives: (i) knowledge of particle properties; (ii) behavior of MP in test setups involving ecotoxicological test organisms; and (iii) accordingly, test conditions that may need adjustment. Only under those prerequisites will reliable hazard assessment of MP be feasible. Integr Environ Assess Manag 2017;13:500-504. © 2017 SETAC.


Assuntos
Plásticos/toxicidade , Testes de Toxicidade/normas , Poluentes Químicos da Água/toxicidade , Ecotoxicologia , Monitoramento Ambiental , Laboratórios , Plásticos/análise , Testes de Toxicidade/métodos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa