Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 6(3): e51, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18336068

RESUMO

Phagocytosis requires locally coordinated cytoskeletal rearrangements driven by actin polymerization and myosin motor activity. How this actomyosin dynamics is dependent upon systems that provide access to ATP at phagosome microdomains has not been determined. We analyzed the role of brain-type creatine kinase (CK-B), an enzyme involved in high-energy phosphoryl transfer. We demonstrate that endogenous CK-B in macrophages is mobilized from the cytosolic pool and coaccumulates with F-actin at nascent phagosomes. Live cell imaging with XFP-tagged CK-B and beta-actin revealed the transient and specific nature of this partitioning process. Overexpression of a catalytic dead CK-B or CK-specific cyclocreatine inhibition caused a significant reduction of actin accumulation in the phagocytic cup area, and reduced complement receptor-mediated, but not Fc-gammaR-mediated, ingestion capacity of macrophages. Finally, we found that inhibition of CK-B affected phagocytosis already at the stage of particle adhesion, most likely via effects on actin polymerization behavior. We propose that CK-B activity in macrophages contributes to complement-induced F-actin assembly events in early phagocytosis by providing local ATP supply.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Creatina Quinase Forma BB/metabolismo , Fagocitose , Trifosfato de Adenosina/provisão & distribuição , Animais , Adesão Celular , Proteínas do Sistema Complemento/metabolismo , Creatina Quinase Forma BB/fisiologia , Creatinina/análogos & derivados , Creatinina/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Proteínas Opsonizantes/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Polímeros/metabolismo , Transporte Proteico/fisiologia , Fatores de Tempo , Zimosan/metabolismo
2.
Epilepsia ; 51(1): 79-88, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19624717

RESUMO

PURPOSE: Brain-type creatine kinase (CK-B) and ubiquitous mitochondrial creatine kinase (UbCKmit) act as components of local phosphocreatine ATP shuttles that help in the compartmentalization and maintenance of pools of high-energy phosphate molecules in both neurons and glial cells. We investigated the role of these brain-type creatine kinases during extreme energy-demanding conditions in vivo (generalized tonic-clonic seizures) and in vitro. METHODS: The physiologic response of wild-types and mice lacking both CK-B and UbCKmit (CK--/--mice) to pentylenetetrazole (PTZ)-induced seizures was measured using electroencephalography (EEG) recordings and behavioral monitoring. In vitro intracellular Ca(2+) kinetics in hippocampal granule neurons were monitored upon single and repetitive depolarizations. RESULTS: PTZ induced in only a few CK--/-- mice PTZ seizure-like behavior, but in all wild-types a full-blown seizure. EEG analysis showed that preseizure jerking was associated with high-amplitude discharges. Wild-type EEG recordings showed continuous runs of rhythmic 4-6 Hz activity, whereas no rhythmic EEG activities were observed in the few CK--/-- mice that developed a behavioral seizure. All other CK--/-- mice displayed a sudden postictal depression without any development of a generalized seizure. Hippocampal granule neurons of CK--/-- mice displayed a higher Ca(2+) removal speed following repetitive KCl-induced depolarizations. DISCUSSION: Deficiency for creatine kinase is affecting brain energy metabolism and will likely contribute to the disturbance of seizure development. Because CK--/-- hippocampal neurons exhibited an increase in Ca(2+) removal rate of elevated intracellular levels, we conclude that altered Ca(2+) clearance in CK--/-- neurons could play a role in the abnormal EEG and seizure activity.


Assuntos
Encéfalo/metabolismo , Cálcio/metabolismo , Creatina Quinase Forma BB/deficiência , Creatina Quinase Forma BB/metabolismo , Neurônios/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Creatina Quinase/deficiência , Creatina Quinase/efeitos dos fármacos , Creatina Quinase/metabolismo , Creatina Quinase Forma BB/efeitos dos fármacos , Creatina Quinase Mitocondrial/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Metabolismo Energético , Hipocampo/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neurônios/enzimologia , Pentilenotetrazol , Cloreto de Potássio/farmacologia , Convulsões/enzimologia
3.
Mol Cancer ; 8: 54, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19646236

RESUMO

BACKGROUND: The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. RESULTS: Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. CONCLUSION: The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.


Assuntos
Transformação Celular Neoplásica , Fibroblastos/metabolismo , Glicólise , Fosforilação Oxidativa , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/fisiologia , Animais , Linhagem Celular Transformada , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Ácido Láctico/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Mitocôndrias/metabolismo , NAD/metabolismo , Transplante de Neoplasias , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Consumo de Oxigênio , Retroviridae/genética , Superóxidos/metabolismo , Proteínas ras/genética , Proteínas ras/fisiologia
4.
Physiol Behav ; 97(1): 76-86, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19419668

RESUMO

The cytosolic brain-type creatine kinase and mitochondrial ubiquitous creatine kinase (CK-B and UbCKmit) are expressed during the prepubescent and adult period of mammalian life. These creatine kinase (CK) isoforms are present in neural cell types throughout the central and peripheral nervous system and in smooth muscle containing tissues, where they have an important role in cellular energy homeostasis. Here, we report on the coupling of CK activity to body temperature rhythm and adaptive thermoregulation in mice. With both brain-type CK isoforms being absent, the body temperature reproducibly drops ~1.0 degrees C below normal during every morning (inactive) period in the daily cycle. Facultative non-shivering thermogenesis is also impaired, since CK--/-- mice develop severe hypothermia during 24 h cold exposure. A relationship with fat metabolism was suggested because comparison of CK--/-- mice with wildtype controls revealed decreased weight gain associated with less white and brown fat accumulation and smaller brown adipocytes. Also, circulating levels of glucose, triglycerides and leptin are reduced. Extensive physiological testing and uncoupling protein1 analysis showed, however, that the thermogenic problems are not due to abnormal responsiveness of brown adipocytes, since noradrenaline infusion produced a normal increase of body temperature. Moreover, we demonstrate that the cyclic drop in morning temperature is also not related to altered rhythmicity with reduced locomotion, diminished food intake or increased torpor sensitivity. Although several integral functions appear altered when CK is absent in the brain, combined findings point into the direction of inefficient neuronal transmission as the dominant factor in the thermoregulatory defect.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Creatina Quinase Forma BB/fisiologia , Creatina Quinase Mitocondrial/fisiologia , Adipócitos/citologia , Adipócitos/ultraestrutura , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Glicemia , Ritmo Circadiano , Creatina Quinase Forma BB/genética , Creatina Quinase Mitocondrial/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Canais Iônicos/metabolismo , Leptina/sangue , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Atividade Motora , Norepinefrina/farmacologia , Tamanho do Órgão , Estresse Fisiológico , Proteína Desacopladora 1
5.
BMC Neurosci ; 9: 73, 2008 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-18662381

RESUMO

BACKGROUND: Neurons require an elaborate system of intracellular transport to distribute cargo throughout axonal and dendritic projections. Active anterograde and retrograde transport of mitochondria serves in local energy distribution, but at the same time also requires input of ATP. Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal coordination between mitochondrial motility and energy distribution. Therefore, we analysed the impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor protein (APP) cargo in these cells, using live cell imaging. RESULTS: Comparison of average and maximum transport velocities and global transport activity showed that CK-B deficiency had no effect on speed of movement of mitochondria or APP cargo, but that the fraction of motile mitochondria was significantly increased by 36% in neurons derived from CK-B knockout mice. The percentage of motile APP vesicles was not altered. CONCLUSION: CK-B activity does not directly couple to motor protein activity but cells without the enzyme increase the number of motile mitochondria, possibly as an adaptational strategy aimed to enhance mitochondrial distribution versatility in order to compensate for loss of efficiency in the cellular network for ATP distribution.


Assuntos
Creatina Quinase Forma BB/deficiência , Mitocôndrias/fisiologia , Neurônios/enzimologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Transporte Axonal/fisiologia , Células Cultivadas , Creatina Quinase Forma BB/genética , Metabolismo Energético , Técnica Indireta de Fluorescência para Anticorpo/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Behav Brain Res ; 157(2): 219-34, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15639173

RESUMO

The cytosolic brain-type creatine kinase (BCK) isoform and the mitochondrial ubiquitous creatine kinase (UbCKmit) isoform are both important for the maintenance and distribution of cellular energy in neurons and astrocytes. Previously, we reported that mice deficient for BCK or UbCKmit each showed a surprisingly mild phenotype, probably due to reciprocal functional compensation by the remaining creatine kinase. This study shows that adult male mice lacking both creatine kinase isoforms (CK--/-- double knockout mice) have a reduced body weight, and demonstrate a severely impaired spatial learning in both a dry and a wet maze, lower nestbuilding activity and diminished acoustic startle reflex responses when compared to age-matched male wildtype mice with the same genetic background. In contrast, their visual and motor functions, exploration behaviour, prepulse inhibition and anxiety-related responses were not changed, suggesting no global deficit in sensorimotor function, hearing or motivation. Morphological analysis of CK--/-- double knockout brains revealed a reduction of approximately 7% in wet brain weight and hippocampal size, a approximately 15% smaller regio-inferior and relatively larger supra-pyramidal, and intra-infra-pyramidal mossy fiber areas. These results suggest that lack of both brain specific creatine kinase isoforms renders the synaptic circuitry in adult brain less efficient in coping with sensory or cognitive activity related challenges.


Assuntos
Peso Corporal/fisiologia , Creatina Quinase/metabolismo , Metabolismo Energético/fisiologia , Hipocampo/enzimologia , Isoenzimas/metabolismo , Aprendizagem em Labirinto/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Animais , Encéfalo/citologia , Encéfalo/enzimologia , Creatina Quinase/deficiência , Creatina Quinase Forma BB , Creatina Quinase Mitocondrial , Comportamento Exploratório/fisiologia , Feminino , Hipocampo/citologia , Isoenzimas/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musgosas Hipocampais/enzimologia , Comportamento de Nidação/fisiologia
7.
Physiol Genomics ; 19(1): 50-60, 2004 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-15226483

RESUMO

Mouse PTP-BL is a large, nontransmembrane protein tyrosine phosphatase of unclear physiological function that consists of a KIND domain, a FERM domain, five PDZ domains, and a COOH-terminal catalytic PTP domain. PTP-BL and its human ortholog PTP-BAS have been proposed to play a role in the regulation of microfilament dynamics, cytokinesis, apoptosis, and neurite outgrowth. To investigate the biological function of PTP-BL enzyme activity, we have generated mice that lack the PTP-BL PTP moiety. These PTP-BL(DeltaP/DeltaP) mice are viable and fertile and do not present overt morphological alterations. Although PTP-BL is expressed in most hematopoietic cell lineages, no alterations of thymocyte development in PTP-BL(DeltaP/DeltaP) mice could be detected. Sciatic nerve lesioning revealed that sensory nerve recovery is unaltered in these mice. In contrast, a very mild but significant impairment of motor nerve repair was observed. Our findings exclude an essential role for PTP-BL as a phosphotyrosine phosphatase and rather are in line with a role as scaffolding or anchoring molecule.


Assuntos
Neurônios Motores/metabolismo , Neurônios Motores/patologia , Regeneração Nervosa , Proteínas Tirosina Fosfatases/deficiência , Proteínas Tirosina Fosfatases/genética , Alelos , Animais , Axônios/metabolismo , Peso Corporal , Feminino , Linfócitos/citologia , Linfócitos/metabolismo , Masculino , Camundongos , Compressão Nervosa , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Fenótipo , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 13 , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nervo Isquiático/fisiologia , Deleção de Sequência/genética
8.
PLoS One ; 9(5): e97378, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824795

RESUMO

Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.


Assuntos
Acrilamidas/farmacologia , Citoesqueleto de Actina/fisiologia , Trifosfato de Adenosina/metabolismo , Citocinas/metabolismo , Macrófagos/citologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas/farmacologia , Western Blotting , Linhagem Celular , Citocinas/antagonistas & inibidores , Primers do DNA/genética , Fluorescência , Humanos , Macrófagos/fisiologia , Microscopia Eletrônica de Varredura , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Oxirredução , Consumo de Oxigênio/fisiologia , Fagocitose/efeitos dos fármacos , Transfecção
9.
PLoS One ; 9(5): e96786, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24796786

RESUMO

Macrophages constantly undergo morphological changes when quiescently surveying the tissue milieu for signs of microbial infection or damage, or after activation when they are phagocytosing cellular debris or foreign material. These morphofunctional alterations require active actin cytoskeleton remodeling and metabolic adaptation. Here we analyzed RAW 264.7 and Maf-DKO macrophages as models to study whether there is a specific association between aspects of carbohydrate metabolism and actin-based processes in LPS-stimulated macrophages. We demonstrate that the capacity to undergo LPS-induced cell shape changes and to phagocytose complement-opsonized zymosan (COZ) particles does not depend on oxidative phosphorylation activity but is fueled by glycolysis. Different macrophage activities like spreading, formation of cell protrusions, as well as phagocytosis of COZ, were thereby strongly reliant on the presence of low levels of extracellular glucose. Since global ATP production was not affected by rewiring of glucose catabolism and inhibition of glycolysis by 2-deoxy-D-glucose and glucose deprivation had differential effects, our observations suggest a non-metabolic role for glucose in actin cytoskeletal remodeling in macrophages, e.g. via posttranslational modification of receptors or signaling molecules, or other effects on the machinery that drives actin cytoskeletal changes. Our findings impute a decisive role for the nutrient state of the tissue microenvironment in macrophage morphodynamics.


Assuntos
Glucose/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Forma Celular/efeitos dos fármacos , Sobrevivência Celular , Proteínas do Sistema Complemento/metabolismo , Citoesqueleto/metabolismo , Desoxiglucose/metabolismo , Glicólise , Lactatos/metabolismo , Camundongos , Fosforilação Oxidativa , Fagocitose , Pseudópodes/metabolismo , Zimosan/metabolismo
10.
PLoS One ; 4(3): e5030, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19333390

RESUMO

BACKGROUND: Creatine Kinases (CK) catalyze the reversible transfer of high-energy phosphate groups between ATP and phosphocreatine, thereby playing a storage and distribution role in cellular energetics. Brain-type CK (CK-B) deficiency is coupled to loss of function in neural cell circuits, altered bone-remodeling by osteoclasts and complement-mediated phagocytotic activity of macrophages, processes sharing dependency on actomyosin dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide evidence for direct coupling between CK-B and actomyosin activities in cortical microdomains of astrocytes and fibroblasts during spreading and migration. CK-B transiently accumulates in membrane ruffles and ablation of CK-B activity affects spreading and migration performance. Complementation experiments in CK-B-deficient fibroblasts, using new strategies to force protein relocalization from cytosol to cortical sites at membranes, confirmed the contribution of compartmentalized CK-B to cell morphogenetic dynamics. CONCLUSION/SIGNIFICANCE: Our results provide evidence that local cytoskeletal dynamics during cell motility is coupled to on-site availability of ATP generated by CK-B.


Assuntos
Actomiosina/metabolismo , Trifosfato de Adenosina/biossíntese , Movimento Celular , Creatina Quinase Forma BB/metabolismo , Metabolismo Energético , Animais , Astrócitos/ultraestrutura , Creatina Quinase Forma BB/fisiologia , Citoesqueleto/metabolismo , Fibroblastos/ultraestrutura , Microdomínios da Membrana/metabolismo , Camundongos
11.
Nat Med ; 14(9): 966-72, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18724377

RESUMO

Osteoclasts differentiate from precursor cells of the monocyte-macrophage lineage and subsequently become activated to be competent for bone resorption through programs primarily governed by receptor activator of nuclear factor-kappaB ligand in cooperation with macrophage colony-stimulating factor. Proteins prominently expressed at late phases of osteoclastogenesis and with a supportive role in osteoclast function are potential therapeutic targets for bone-remodeling disorders. In this study, we used a proteomics approach to show that abundance of the brain-type cytoplasmic creatine kinase (Ckb) is greatly increased during osteoclastogenesis. Decreasing Ckb abundance by RNA interference or blocking its enzymatic activity with a pharmacological inhibitor, cyclocreatine, suppressed the bone-resorbing activity of osteoclasts grown in vitro via combined effects on actin ring formation, RhoA GTPase activity and vacuolar ATPase function. Activities of osteoclasts derived from Ckb-/- mice were similarly affected. In vivo studies showed that Ckb-/- mice were better protected against bone loss induced by ovariectomy, lipopolysaccharide challenge or interleukin-1 treatment than wild-type controls. Furthermore, administration of cyclocreatine or adenoviruses harboring Ckb small hairpin RNA attenuated bone loss in rat and mouse models. Our findings establish an important role for Ckb in the bone-resorbing function of osteoclasts and underscore its potential as a new molecular target for antiresorptive drug development.


Assuntos
Reabsorção Óssea/enzimologia , Creatina Quinase Forma BB/metabolismo , Osteoclastos/metabolismo , Animais , Western Blotting , Creatina Quinase Forma BB/genética , Primers do DNA/genética , Eletroforese em Gel Bidimensional , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Exp Cell Res ; 297(1): 97-107, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15194428

RESUMO

Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.


Assuntos
Adenilato Quinase/metabolismo , Metabolismo Energético/fisiologia , Isoenzimas/metabolismo , Neoplasias/enzimologia , Estresse Oxidativo/fisiologia , Adenilato Quinase/genética , Animais , Morte Celular/genética , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Inibidores Enzimáticos/farmacologia , Galactose/metabolismo , Galactose/farmacologia , Glucose/deficiência , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Humanos , Isoenzimas/genética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos
13.
Mol Cell Biochem ; 256-257(1-2): 305-18, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14977190

RESUMO

Brain-type creatine kinases B-CK (cytosolic) and UbCKmit (mitochondrial) are considered important for the maintenance and distribution of cellular energy in the central nervous system. Previously, we have demonstrated an abnormal behavioral phenotype in mice lacking the B-CK creatine kinase isoform, regarding exploration, habituation, seizure susceptibility and spatial learning. The phenotype in these mice was associated with histological adaptations in the hippocampal mossy fiber field size. Here, mice lacking the ubiquitous mitochondrial creatine kinase isoform (UbCKmit-/- mice) showed, when subjected to a similar battery of behavioral tasks, diminished open field habituation and slower spatial learning acquisition in the Morris water maze task, but normal sensory or motor functions. A reduced acoustic startle response, higher threshold, and lack of prepulse inhibition were observed in UbCKmit-/- mice, suggesting that the unconditioned reflexive responsiveness is not optimal. Our findings suggest a role for mitochondrial CK-mediated high-energy phosphoryl transfer in synaptic signalling in the acoustic signal response network and hippocampal-dependent learning circuitry of brain. Finally, we demonstrate that UbCKmit has a widespread occurrence in the cell soma of neuronal nuclei along the rostro-caudal axis of the brain, i.e. cortex, midbrain, hindbrain, cerebellum and brainstem, similar to the occurrence of B-CK. This may explain the similarity of phenotypes in mice lacking B-CK or UbCKmit. We predict that the remaining functional intactness of the cytosolic B-CK reaction and perhaps the compensatory role of other phosphoryl transfer systems are sufficient to sustain the energy requirements for basic sensory, motor and physiological activities in UbCKmit-/- mice.


Assuntos
Estimulação Acústica , Creatina Quinase/metabolismo , Isoenzimas/metabolismo , Aprendizagem , Reflexo de Sobressalto , Animais , Encéfalo/enzimologia , Creatina Quinase/genética , Imuno-Histoquímica , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Fenótipo
14.
Magn Reson Med ; 50(5): 936-43, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14587004

RESUMO

As a model for guanidinoacetate methyltransferase (GAMT) deficiency in humans, a gene knockout mouse model was generated. Here we report on several metabolic abnormalities in these mice, observed by in vivo and in vitro MR spectroscopy. In (1)H MR spectra of brain and hindleg muscle a clearly reduced signal of creatine (Cr) was observed in GAMT-deficient (GAMT-/-) animals. Analysis of the (1)H MR spectra of GAMT-/- brain indicated little or no increase of a signal for guanidinoacetate (Gua). In proton MR spectra of muscle, a broad signal of low intensity was observed for Gua. However, substantial Gua accumulation in intact muscle tissue was unequivocally confirmed in high-resolution magic angle spinning spectra, in which the Gua signal was resolved as one clear sharp singlet. In (31)P MR analysis of brain and hindleg muscle a strongly reduced phosphocreatine (PCr) content was shown. In addition, a signal of phosphorylated Gua at 0.5 ppm upfield of PCr was observed, with much higher intensity in muscle than in brain. This signal decreased when ischemia was applied to the muscle and recovered after ischemia was released. Overall, the in vivo (31)P and (1)H MR spectroscopy of GAMT-/- mice is similar to that of human GAMT deficiency. This opens up new avenues for the fundamental study of tissue-type dependence of creatine synthesis and transport and for diagnostic and therapeutic aspects of creatine deficiencies in humans.


Assuntos
Encéfalo/metabolismo , Creatina/deficiência , Glicina/análogos & derivados , Espectroscopia de Ressonância Magnética , Metiltransferases/deficiência , Músculo Esquelético/metabolismo , Animais , Química Encefálica , Glicina/metabolismo , Guanidinoacetato N-Metiltransferase , Membro Posterior , Humanos , Erros Inatos do Metabolismo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Eur J Neurosci ; 15(10): 1692-706, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12059977

RESUMO

Creatine kinases are important in maintaining cellular-energy homeostasis, and neuroprotective effects have been attributed to the administration of creatine and creatine-like compounds. Herein we examine whether ablation of the cytosolic brain-type creatine kinase (B-CK) in mice has detrimental effects on brain development, physiological integrity or task performance. Mice deficient in B-CK (B-CK-/-) showed no gross abnormalities in brain anatomy or mitochondrial ultrastructure, but had a larger intra- and infrapyramidal mossy fibre area. Nuclear magnetic resonance spectroscopy revealed that adenosine triphosphate (ATP) and phosphocreatine (PCr) levels were unaffected, but demonstrated an apparent reduction of the PCr left arrow over right arrow ATP phosphorus exchange capacity in these mice. When assessing behavioural characteristics B-CK-/- animals showed diminished open-field habituation. In the water maze, adult B-CK-/- mice were slower to learn, but acquired the spatial task. This task performance deficit persisted in 24-month-old, aged B-CK-/- mice, on top of the age-related memory decline normally seen in old animals. Finally, a delayed development of pentylenetetrazole-induced seizures (creating a high-energy demand) was observed in B-CK-/- mice. It is suggested that the persistent expression of the mitochondrial isoform ubiquitous mitochondrial CK (UbCKmit) in the creatine/phospho-creatine shuttle provides compensation for the loss of B-CK in the brain. Our studies indicate a role for the creatine-phosphocreatine/CK circuit in the formation or maintenance of hippocampal mossy fibre connections, and processes that involve habituation, spatial learning and seizure susceptibility. However, for fuelling of basic physiological activities the role of B-CK can be compensated for by other systems in the versatile and robust metabolic-energy network of the brain.


Assuntos
Encéfalo/fisiologia , Creatina Quinase/fisiologia , Transferência de Energia/fisiologia , Habituação Psicofisiológica/fisiologia , Isoenzimas/fisiologia , Percepção Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/citologia , Convulsivantes , Creatina Quinase/genética , Creatina Quinase/metabolismo , Creatina Quinase Forma BB , Suscetibilidade a Doenças , Comportamento Exploratório/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Fibras Musgosas Hipocampais/fisiologia , Neurônios/classificação , Neurônios/enzimologia , Pentilenotetrazol , Fósforo , Convulsões/induzido quimicamente , Natação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa