Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cereb Cortex ; 33(10): 6028-6037, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36520501

RESUMO

Recollection of past events has been associated with the core recollection network comprising the posterior medial temporal lobe and parietal regions, as well as the medial prefrontal cortex (mPFC). The development of the brain basis for recollection is understudied. In a sample of adults (n = 22; 18-25 years) and children (n = 23; 9-13 years), the present study aimed to address this knowledge gap using a cued recall paradigm, known to elicit recollection experience. Successful recall was associated with activations in regions of the core recollection network and frontoparietal network. Adults exhibited greater successful recall activations compared with children in the precuneus and right angular gyrus. In contrast, similar levels of successful recall activations were observed in both age groups in the mPFC. Group differences were also seen in the hippocampus and lateral frontal regions. These findings suggest that the engagement of the mPFC in episodic retrieval may be relatively early maturing, whereas the contribution to episodic retrieval of more posterior regions such as the precuneus and angular gyrus undergoes more protracted maturation.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Adulto , Criança , Humanos , Rememoração Mental , Encéfalo/diagnóstico por imagem , Lobo Parietal
2.
Hippocampus ; 33(9): 1067-1072, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37132590

RESUMO

The hippocampus is composed of cytoarchitecturally distinct subfields that support specific memory functions. Variations in total hippocampal volume across development have been linked to socioeconomic status (SES), a proxy for access to material resources, medical care, and quality education. High childhood household SES is associated with greater cognitive abilities in adulthood. Currently, it is not known whether household SES differentially impacts specific hippocampal subfield volumes. We assessed susceptibility of subfields to variations in household SES across development in a sample of 167 typically developing 5- to 25-year-old. Bilateral cornu ammonis (CA) 1-2, combined CA3-dentate gyrus (DG), and subiculum (Sub) volumes were measured by highly reliable manual segmentation of high-resolution T2-weighted images and adjusted for intracranial volume. A summary component score of SES measures (paternal education, maternal education, and income-to-needs ratio) was used to examine variability in volumes across ages. We did not identify age-related differences in any of the regional volumes, nor did age modify SES-related effects. Controlling for age, larger volumes of CA3-DG and CA1-2 were associated with lower SES, while Sub volume was not. Overall, these findings support the specific impact of SES on CA3-DG and CA1-2 and highlight the importance of considering environmental influences on hippocampal subfield development.


Assuntos
Região CA1 Hipocampal , Hipocampo , Cognição , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Memória , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto
3.
Hippocampus ; 33(12): 1292-1315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37881160

RESUMO

The human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan. Limited evidence suggests that DG and CA3 volumes differ across development while other regions remain relatively stable, and studies of adulthood implicate a downward trend in all subfield volumes with prominent age effects on CA1. Due to differences in methods and limited sampling for any single study, the magnitude of age effects on Hc subfield volumes and their probable lifespan trajectories remain unclear. Here, we conducted a meta-analysis on cross-sectional studies (n = 48,278 participants, ages = 4-94 years) to examine the association between age and Hc subfield volumes in development (n = 11 studies), adulthood (n = 30 studies), and a combined lifespan sample (n = 41 studies) while adjusting estimates for sample sizes. In development, age was positively associated with DG and CA3-4 volumes, whereas in adulthood a negative association was observed with all subfield volumes. Notably, the observed age effects were not different across subfield volumes within each age group. All subfield volumes showed a nonlinear age pattern across the lifespan with DG and CA3-4 volumes showing a more distinct age trajectory as compared to the other subfields. Lastly, among all the study-level variables, only female percentage of the study sample moderated the age effect on CA1 volume: a higher female-to-male ratio in the study sample was linked to the greater negative association between age and CA1 volume. These results document that Hc subfield volumes differ as a function of age offering broader implications for constructing theoretical models of lifespan memory development.


Assuntos
Hipocampo , Longevidade , Humanos , Masculino , Feminino , Estudos Transversais , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
4.
Neuropsychol Rev ; 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060422

RESUMO

Preterm birth (< 37 weeks gestation) has been associated with memory deficits, which has prompted investigation of possible alterations in hippocampal volume in this population. However, existing literature reports varying effects of premature birth on hippocampal volume. Specifically, it is unclear whether smaller hippocampal volume in preterm-born individuals is merely reflective of smaller total brain volume. Further, it is not clear if hippocampal volume is associated with episodic memory functioning in preterm-born individuals. Meta-analysis was used to investigate the effects of premature birth on hippocampal volume and episodic memory from early development to young adulthood (birth to 26). PubMed, PsychINFO, and Web of Science were searched for English peer-reviewed articles that included hippocampal volume of preterm and term-born individuals. Thirty articles met the inclusion criteria. Separate meta-analyses were used to evaluate standardized mean differences between preterm and term-born individuals in uncorrected and corrected hippocampal volume, as well as verbal and visual episodic memory. Both uncorrected and corrected hippocampal volume were smaller in preterm-born compared to term-born individuals. Although preterm-born individuals had lower episodic memory performance than term-born individuals, the limited number of studies only permitted a qualitative review of the association between episodic memory performance and hippocampal volume. Tested moderators included mean age, pre/post-surfactant era, birth weight, gestational age, demarcation method, magnet strength, and slice thickness. With this meta-analysis, we provide novel evidence of the effects of premature birth on hippocampal volume.

5.
Cereb Cortex ; 31(2): 1032-1045, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32995843

RESUMO

The myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior-posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T2 magnetic resonance imaging combined with multi-T2 fitting, the myelin water fraction (MWF) and geometric-mean of the intra-/extracellular water T2 (geomT2IEW) in 395 individuals (7-85 years; 41% males) were examined. The approach was validated where regional patterns along the CC closely resembled the histology; MWF matched mean axon diameter and geomT2IEW mirrored the density of large-caliber axons. Across the lifespan, MWF exhibited a quadratic association with age in all 10 CC regions with evidence of a positive linear MWF-age relationship among younger participants and minimal age differences in the remainder of the lifespan. Regarding geomT2IEW, a significant linear age × region interaction reflected positive linear age dependence mostly prominent in the regions with the highest density of small-caliber fibers-genu and splenium. In all, these two indicators characterize distinct attributes that are consistent with histology, which is a first. In addition, these results conform to rapid developmental progression of CC myelination leveling in middle age as well as age-related degradation of axon sheaths in older adults.


Assuntos
Axônios/fisiologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiologia , Longevidade/fisiologia , Bainha de Mielina/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Contagem de Células/métodos , Contagem de Células/tendências , Criança , Corpo Caloso/citologia , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Neurosci Res ; 99(10): 2327-2339, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33751637

RESUMO

The hippocampus (Hc) is composed of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors 1-3 (CA1-3), and subiculum. Limited evidence suggests differential maturation rates across the Hc subfields. While longitudinal studies are essential in demonstrating differential development of Hc subfields, a prerequisite for interpreting meaningful longitudinal effects is establishing test-retest consistency of Hc subfield volumes measured in vivo over time. Here, we examined test-retest consistency of Hc subfield volumes measured from structural MR images in two independent developmental samples. Sample One (n = 28, ages 7-20 years, M = 12.64, SD = 3.35) and Sample Two (n = 28, ages 7-17 years, M = 11.72, SD = 2.88) underwent MRI twice with a 1-month and a 2-year delay, respectively. High-resolution PD-TSE-T2 -weighted MR images (0.4 × 0.4 × 2 mm3 ) were collected and manually traced using a longitudinal manual demarcation protocol. In both samples, we found excellent consistency of Hc subfield volumes between the two visits, assessed by two-way mixed intraclass correlation (ICC (3) single measures ≥ 0.87), and no difference between children and adolescents. The results further indicated that discrepancies between repeated measures were not related to Hc subfield volumes, or visit number. In addition to high consistency, with the applied longitudinal protocol, we detected significant variability in Hc subfield volume changes over the 2-year delay, implying high sensitivity of the method in detecting individual differences. Establishing unbiased, high longitudinal consistency of Hc subfield volume measurements optimizes statistical power of a hypothesis test and reduces standard error of the estimate, together improving external validity of the measures in constructing theoretical models of memory development.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Desenvolvimento Infantil/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/tendências , Adolescente , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Distribuição Aleatória , Reprodutibilidade dos Testes , Adulto Jovem
7.
Cereb Cortex ; 28(9): 3295-3308, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968652

RESUMO

The development of the brain, particularly the protracted maturation of the prefrontal cortex (PFC), supports the development of episodic memory. Yet how different regions of the PFC functionally mature to support age-related increases in memory performance remains unclear. We investigated the PFC contribution to subsequent memory (SM) of encoded visual scenes in children, adolescents, and young adults (n = 83). We identified distinct patterns of PFC activations supporting SM: regions in the lateral PFC showed positive SM effects, whereas regions in the superior and medial PFC showed negative SM effects. Both positive and negative SM effects increased with age. The magnitude of negative SM effects in the superior PFC partially mediated the age-related increase in memory. Functional connectivity between lateral PFC and regions in the medial temporal lobe (MTL) increased with age during successful memory formation. In contrast, functional connectivity between the superior PFC and regions in the MTL decreased with age, suggesting an age-related increase in the anti-correlation between these regions. These findings highlight the differential involvement of regions within the PFC supporting memory formation.


Assuntos
Memória Episódica , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , Adolescente , Envelhecimento/fisiologia , Criança , Feminino , Humanos , Masculino , Adulto Jovem
8.
Neuroimage ; 181: 162-169, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981483

RESUMO

Memory functioning undergoes dynamic changes between childhood and adulthood. Spontaneous use of elaborative strategies, which can enhance the recall of information, expands with age and contributes to age-associated improvement in memory functioning. Findings from lesion and neuroimaging studies suggest that the ability to use elaborative strategies is dependent upon intact functioning of the prefrontal cortex (PFC), particularly the dorsolateral PFC region. Because the PFC undergoes protracted maturation, we examined whether age difference in the structure of the PFC is correlated with age-associated increase in strategy use. Here, we investigated the relationship between PFC volume and spontaneous strategy use in a sample of 120 participants aged 5-25 years. We assessed semantic clustering during recall with a standardized word-list recall task (California Verbal Learning Task children's version, CVLT-C) and computed PFC regional volumes from participants' structural brain images. We observed an age-associated increase in the use of semantic clustering and an age-associated decrease in volumes of the PFC. Further, we found that smaller PFC volume was linked to increased use of semantic clustering. Importantly, the volume of the right dorsolateral PFC partially explained the relation between age and the use of semantic clustering. These findings suggest that PFC maturation supports the development of strategy use and lends further support for the notion that brain-behavior relations change across development.


Assuntos
Associação , Desenvolvimento Humano/fisiologia , Rememoração Mental/fisiologia , Neuroimagem/métodos , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Semântica , Aprendizagem Verbal/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
9.
Dev Sci ; 21(3): e12561, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28464381

RESUMO

An individual's socioeconomic status (SES) is often viewed as a proxy for a host of environmental influences. SES disparities have been linked to variance in brain structures particularly the hippocampus, a neural substrate of learning and memory. However, it is unclear whether the association between SES and hippocampal volume is similar in children and adults. We investigated the relationship between hippocampal volume and SES in a group of children (n = 31, age 8-12 years) and a group of young adults (n = 32, age 18-25 years). SES was assessed with four indicators that loaded on a single factor, therefore a composite SES scores was used in the main analyses. Hippocampal volume was measured using manual demarcation on high resolution structural images. SES was associated with hippocampal volume in the children, but not in adults, suggesting that in childhood, but not adulthood, SES-related environmental factors influence hippocampal volume. In addition, hippocampal volume, but not SES, was associated with scores on a memory task, suggesting that net effects of postnatal environmental factors, captured by SES, are more distal determinants of memory performance than hippocampal volume. Longitudinal investigation of the association between SES, hippocampal volume and cognitive functioning may further our understanding of the putative neural mechanisms underlying SES-related environmental effects on cognitive development.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Tamanho do Órgão/fisiologia , Classe Social , Adolescente , Adulto , Aptidão/fisiologia , Criança , Cognição/fisiologia , Feminino , Humanos , Masculino , Estresse Psicológico , Adulto Jovem
10.
Neuroimage ; 153: 75-85, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342999

RESUMO

Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus.


Assuntos
Envelhecimento , Aprendizagem por Associação , Região CA3 Hipocampal/anatomia & histologia , Giro Denteado/anatomia & histologia , Memória , Adolescente , Adulto , Região CA3 Hipocampal/crescimento & desenvolvimento , Criança , Giro Denteado/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Modelos Neurológicos , Adulto Jovem
11.
Hippocampus ; 27(1): 3-11, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27862600

RESUMO

The advent of high-resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Because of the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high-resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies. © 2016 Wiley Periodicals, Inc.


Assuntos
Hipocampo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Giro Para-Hipocampal/diagnóstico por imagem , Humanos , Reconhecimento Automatizado de Padrão
12.
Hippocampus ; 26(2): 220-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26286891

RESUMO

The hippocampus is composed of distinct subfields: the four cornu ammonis areas (CA1-CA4), dentate gyrus (DG), and subiculum. The few in vivo studies of human hippocampal subfields suggest that the extent of age differences in volume varies across subfields during healthy childhood development and aging. However, the associations between age and subfield volumes across the entire lifespan are unknown. Here, we used a high-resolution imaging technique and manually measured hippocampal subfield and entorhinal cortex volumes in a healthy lifespan sample (N = 202), ages 8-82 yrs. The magnitude of age differences in volume varied among the regions. Combined CA1-2 volume evidenced a negative linear association with age. In contrast, the associations between age and volumes of CA3-DG and the entorhinal cortex were negative in mid-childhood and attenuated in later adulthood. Volume of the subiculum was unrelated to age. The different magnitudes and patterns of age differences in subfield volumes may reflect dynamic microstructural factors and have implications for cognitive functions across the lifespan. © 2015 Wiley Periodicals, Inc.


Assuntos
Envelhecimento , Região CA1 Hipocampal/anatomia & histologia , Região CA2 Hipocampal/anatomia & histologia , Giro Denteado/anatomia & histologia , Córtex Entorrinal/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Região CA1 Hipocampal/patologia , Região CA2 Hipocampal/patologia , Região CA3 Hipocampal/patologia , Criança , Estudos Transversais , Giro Denteado/patologia , Córtex Entorrinal/patologia , Feminino , Hipocampo/anatomia & histologia , Hipocampo/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Adulto Jovem
13.
J Int Neuropsychol Soc ; 22(9): 865-877, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27774929

RESUMO

OBJECTIVES: A limited body of research is available on the relationships between multiplicity of birth and neuropsychological functioning in preterm children who were conceived in the age of assisted reproductive technology and served by the modern neonatal intensive care unit. Our chief objective was to evaluate whether, after adjustment for sociodemographic factors and perinatal complications, twin birth accounted for a unique portion of developmental outcome variance in children born at-risk in the surfactant era. METHODS: We compared the neuropsychological functioning of 77 twins and 144 singletons born preterm (<34 gestational weeks) and served by William Beaumont Hospital, Royal Oak, MI. Children were evaluated at preschool age, using standardized tests of memory, language, perceptual, and motor abilities. RESULTS: Multiple regression analyses, adjusting for sociodemographic and perinatal variables, revealed no differences on memory or motor indices between preterm twins and their singleton counterparts. In contrast, performance of language and visual processing tasks was significantly lower in twins despite reduced perinatal risk in comparison to singletons. Effect sizes ranged from .33 to .38 standard deviations for global language and visual processing ability indices, respectively. No significant group by sex interactions were observed, and comparison of first-, or second-born twins with singletons yielded medium effect sizes (Cohen's d=.56 and .40, respectively). CONCLUSIONS: The modest twin disadvantage on language and visual processing tasks at preschool-age could not be readily attributable to socioeconomic or perinatal variables. The possibility of biological or social twinning-related phenomena as mechanisms underlying the observed performance gaps are discussed. (JINS, 2016, 22, 865-877).


Assuntos
Recém-Nascido Prematuro/fisiologia , Desenvolvimento da Linguagem , Memória/fisiologia , Destreza Motora/fisiologia , Testes Neuropsicológicos , Gêmeos , Percepção Visual/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Masculino
14.
Neuroimage ; 109: 249-59, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25579446

RESUMO

Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli.


Assuntos
Reconhecimento Facial/fisiologia , Ritmo Gama , Córtex Visual/fisiologia , Adolescente , Criança , Estimulação Elétrica , Eletrocorticografia , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Estimulação Luminosa
15.
J Exp Child Psychol ; 136: 17-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25854595

RESUMO

The development of associative memory during childhood may be influenced by metacognitive factors. Here, one aspect of metamemory function--belief in strategy efficacy-was tested for a role in the effective use of encoding strategies. A sample of 61 children and adults (8-25 years of age) completed an associative recognition memory test and were assessed on belief in the efficacy of encoding strategies. Independent of age, belief ratings identified two factors: "deep" and "shallow" encoding strategies. Although the strategy factor structure was stable across age, adolescents and adults were more likely to prefer using a deep encoding strategy, whereas children were equally likely to prefer a shallow strategy. Belief ratings of deep encoding strategies increased with age and, critically, accounted for better associative recognition.


Assuntos
Envelhecimento/psicologia , Aprendizagem por Associação , Atitude Frente a Saúde , Memória , Adolescente , Adulto , Fatores Etários , Criança , Feminino , Humanos , Masculino , Reconhecimento Psicológico , Adulto Jovem
16.
J Cogn Neurosci ; 26(3): 501-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24188367

RESUMO

We examined the normal development of intrinsic functional connectivity of the default network (brain regions typically deactivated for attention-demanding tasks) as measured by resting-state fMRI in children, adolescents, and young adults ages 8-24 years. We investigated both positive and negative correlations and employed analysis methods that allowed for valid interpretation of negative correlations and that also minimized the influence of motion artifacts that are often confounds in developmental neuroimaging. As age increased, there were robust developmental increases in negative correlations, including those between medial pFC (MPFC) and dorsolateral pFC (DLPFC) and between lateral parietal cortices and brain regions associated with the dorsal attention network. Between multiple regions, these correlations reversed from being positive in children to negative in adults. Age-related changes in positive correlations within the default network were below statistical threshold after controlling for motion. Given evidence in adults that greater negative correlation between MPFC and DLPFC is associated with superior cognitive performance, the development of an intrinsic anticorrelation between MPFC and DLPFC may be a marker of the large growth of working memory and executive functions that occurs from childhood to young adulthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Descanso/fisiologia , Adolescente , Artefatos , Mapeamento Encefálico/métodos , Criança , Feminino , Lobo Frontal/crescimento & desenvolvimento , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Movimento , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
17.
Neuroimage ; 84: 932-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24064072

RESUMO

Task-induced deactivation of the default-mode network (DMN) has been associated in adults with successful episodic memory formation, possibly as a mechanism to focus allocation of mental resources for successful encoding of external stimuli. We investigated developmental changes of deactivation of the DMN (posterior cingulate, medial prefrontal, and bilateral lateral parietal cortices) during episodic memory formation in children, adolescents, and young adults (ages 8-24), who studied scenes during functional magnetic resonance imaging (fMRI). Recognition memory improved with age. We defined DMN regions of interest from a different sample of participants with the same age range, using resting-state fMRI. In adults, there was greater deactivation of the DMN for scenes that were later remembered than scenes that were later forgotten. In children, deactivation of the default-network did not differ reliably between scenes that were later remembered or forgotten. Adolescents exhibited a pattern of activation intermediate to that of children and adults. The hippocampal region, often considered part of the DMN, showed a functional dissociation with the rest of the DMN by exhibiting increased activation for later remembered than later forgotten scene that was similar across age groups. These findings suggest that development of memory ability from childhood through adulthood may involve increased deactivation of the neocortical DMN during learning.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Memória Episódica , Descanso/fisiologia , Adolescente , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
18.
Brain Struct Funct ; 229(1): 223-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853296

RESUMO

The hippocampus (Hc) consists of cytoarchitectonically and functionally distinct subfields: dentate gyrus (DG), cornu ammonis (CA1-3), and subiculum. In adults, a single nucleotide polymorphism (rs17070145, C→ T) in KIBRA, a gene encoding the eponymous (KIdney-BRAin) protein, is associated with variability in Hc subfield volumes and episodic memory. T-allele carriers have larger DG and CA volumes and better episodic memory compared to C-homozygotes. Little is known, however, about KIBRA's role in the development of the brain and cognition. In a sample of children, adolescents, and young adults (N = 176, ages 5- 25 years), we replicated the adult association between KIBRA T-allele and larger DG and CA volumes but observed no relationship between KIBRA rs17070145 polymorphism and episodic memory. We noted, however, that a general cognitive performance index (IQ) differed across the allelic groups, with the lowest scores among T-homozygotes and the highest among C-homozygotes. Thus, in this developmental sample, KIBRA appears to have opposing effects on regional brain volume and cognition. These influences of KIBRA SNP may stem from associations between developmental reduction in brain volume and gains in cognitive performance-a hypothesis to be tested in longitudinal studies.


Assuntos
Memória Episódica , Polimorfismo de Nucleotídeo Único , Adolescente , Criança , Humanos , Adulto Jovem , Cognição , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Fosfoproteínas , Pré-Escolar , Adulto
19.
Dev Cogn Neurosci ; 65: 101340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218015

RESUMO

Previous brain imaging studies have identified three brain regions that selectively respond to visual scenes, the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC). There is growing evidence that these visual scene-sensitive regions process different types of scene information and may have different developmental timelines in supporting scene perception. How these scene-sensitive regions support memory functions during child development is largely unknown. We investigated PPA, OPA and RSC activations associated with episodic memory formation in childhood (5-7 years of age) and young adulthood, using a subsequent scene memory paradigm and a functional localizer for scenes. PPA, OPA, and RSC subsequent memory activation and functional connectivity differed between children and adults. Subsequent memory effects were found in activations of all three scene regions in adults. In children, however, robust subsequent memory effects were only found in the PPA. Functional connectivity during successful encoding was significant among the three regions in adults, but not in children. PPA subsequently memory activations and PPA-RSC subsequent memory functional connectivity correlated with accuracy in adults, but not children. These age-related differences add new evidence linking protracted development of the scene-sensitive regions to the protracted development of episodic memory.


Assuntos
Mapeamento Encefálico , Memória Episódica , Adulto , Criança , Humanos , Adulto Jovem , Mapeamento Encefálico/métodos , Desenvolvimento Infantil , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa , Reconhecimento Visual de Modelos/fisiologia
20.
Clin Neurophysiol ; 162: 9-27, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552414

RESUMO

OBJECTIVE: In tasks involving new visuospatial information, we rely on working memory, supported by a distributed brain network. We investigated the dynamic interplay between brain regions, including cortical and white matter structures, to understand how neural interactions change with different memory loads and trials, and their subsequent impact on working memory performance. METHODS: Patients undertook a task of immediate spatial recall during intracranial EEG monitoring. We charted the dynamics of cortical high-gamma activity and associated functional connectivity modulations in white matter tracts. RESULTS: Elevated memory loads were linked to enhanced functional connectivity via occipital longitudinal tracts, yet decreased through arcuate, uncinate, and superior-longitudinal fasciculi. As task familiarity grew, there was increased high-gamma activity in the posterior inferior-frontal gyrus (pIFG) and diminished functional connectivity across a network encompassing frontal, parietal, and temporal lobes. Early pIFG high-gamma activity was predictive of successful recall. Including this metric in a logistic regression model yielded an accuracy of 0.76. CONCLUSIONS: Optimizing visuospatial working memory through practice is tied to early pIFG activation and decreased dependence on irrelevant neural pathways. SIGNIFICANCE: This study expands our knowledge of human adaptation for visuospatial working memory, showing the spatiotemporal dynamics of cortical network modulations through white matter tracts.


Assuntos
Córtex Cerebral , Memória de Curto Prazo , Substância Branca , Humanos , Memória de Curto Prazo/fisiologia , Substância Branca/fisiologia , Substância Branca/diagnóstico por imagem , Masculino , Feminino , Adulto , Córtex Cerebral/fisiologia , Percepção Espacial/fisiologia , Pessoa de Meia-Idade , Percepção Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa