Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hum Mol Genet ; 30(11): 1006-1019, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33822956

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscular weakness because of the loss of dystrophin. Extracellular Ca2+ flows into the cytoplasm through membrane tears in dystrophin-deficient myofibers, which leads to muscle contracture and necrosis. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) takes up cytosolic Ca2+ into the sarcoplasmic reticulum, but its activity is decreased in dystrophic muscle. Here, we show that an allosteric SERCA activator, CDN1163, ameliorates dystrophic phenotypes in dystrophin-deficient mdx mice. The administration of CDN1163 prevented exercise-induced muscular damage and restored mitochondrial function. In addition, treatment with CDN1163 for 7 weeks enhanced muscular strength and reduced muscular degeneration and fibrosis in mdx mice. Our findings provide preclinical proof-of-concept evidence that pharmacological activation of SERCA could be a promising therapeutic strategy for DMD. Moreover, CDN1163 improved muscular strength surprisingly in wild-type mice, which may pave the new way for the treatment of muscular dysfunction.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Distrofina/deficiência , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular/genética , Debilidade Muscular/genética , Debilidade Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Distrofia Muscular de Duchenne/patologia , Fenótipo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
2.
Hum Genet ; 142(1): 59-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36048237

RESUMO

Dystrophinopathy is caused by alterations in DMD. Approximately 1% of patients remain genetically undiagnosed, because intronic variations are not detected by standard methods. Here, we combined laboratory and in silico analyses to identify disease-causing genomic variants in genetically undiagnosed patients and determine the regulatory mechanisms underlying abnormal DMD transcript generation. DMD transcripts from 20 genetically undiagnosed dystrophinopathy patients in whom no exon variants were identified, despite dystrophin deficiency on muscle biopsy, were analyzed by transcriptome sequencing. Genome sequencing captured intronic variants and their effects were interpreted using in silico tools. Targeted long-read sequencing was applied in cases with suspected structural genomic abnormalities. Abnormal DMD transcripts were detected in 19 of 20 cases; Exonization of intronic sequences in 15 cases, exon skipping in one case, aberrantly spliced and polyadenylated transcripts in two cases and transcription termination in one case. Intronic single nucleotide variants, chromosomal rearrangements and nucleotide repeat expansion were identified in DMD gene as pathogenic causes of transcript alteration. Our combined analysis approach successfully identified pathogenic events. Detection of diseasing-causing mechanisms in DMD transcripts could inform the therapeutic options for patients with dystrophinopathy.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Splicing de RNA/genética , Íntrons/genética , Nucleotídeos , Análise de Sequência de RNA
3.
Acta Neuropathol ; 145(2): 235-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512060

RESUMO

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.


Assuntos
Miopatias Distais , Proteínas de Choque Térmico HSP40 , Animais , Camundongos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Músculo Esquelético/patologia , Chaperonas Moleculares/genética , Debilidade Muscular/patologia , Miopatias Distais/patologia , Camundongos Knockout
4.
J Transl Med ; 20(1): 517, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348371

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular disorder characterized by asymmetric muscle wasting and weakness. FSHD can be subdivided into two types: FSHD1, caused by contraction of the D4Z4 repeat on chromosome 4q35, and FSHD2, caused by mild contraction of the D4Z4 repeat plus aberrant hypomethylation mediated by genetic variants in SMCHD1, DNMT3B, or LRIF1. Genetic diagnosis of FSHD is challenging because of the complex procedures required. METHODS: We applied Nanopore CRISPR/Cas9-targeted resequencing for the diagnosis of FSHD by simultaneous detection of D4Z4 repeat length and methylation status at nucleotide level in genetically-confirmed and suspected patients. RESULTS: We found significant hypomethylation of contracted 4q-D4Z4 repeats in FSHD1, and both 4q- and 10q-D4Z4 repeats in FSHD2. We also found that the hypomethylation in the contracted D4Z4 in FSHD1 is moderately correlated with patient phenotypes. CONCLUSIONS: Our method contributes to the development for the diagnosis of FSHD using Nanopore long-read sequencing. This finding might give insight into the mechanisms by which repeat contraction causes disease pathogenesis.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Proteínas de Homeodomínio/genética , Metilação de DNA/genética , Cromossomos/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo
5.
Int J Mol Sci ; 19(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413001

RESUMO

Danon disease, an X-linked dominant cardioskeletal myopathy, is caused by primary deficiency of lysosome-associated membrane protein-2 (LAMP-2). To clarify the clinicopathological features and management, we performed the first nationwide, questionnaire-based survey on Danon disease in Japan. A total of 39 patients (17 males, 22 females) from 20 families were identified in the analysis. All patients had cardiomyopathy. Of the 21 patients who died, 20 (95%) died of cardiac failure or sudden cardiac arrest. Most patients had hypertrophic cardiomyopathy. Wolf⁻Parkinson⁻White syndrome was present at a comparatively high incidence (54% in males, 22% in females). Only one female patient received a heart transplant, which is the most effective therapy. Histopathologically, all male patients showed autophagic vacuoles with sarcolemmal features in muscle. Half of the probands showed de novo mutations. Male patients showed completely absent LAMP-2 expression in muscle. In contrast, female patients showed decreased LAMP-2 expression, which is suggested to reflect LAMP-2 haploinsufficiency due to a heterozygous null mutation. In conclusion, Danon disease is an extremely rare muscular disorder in Japan. Cardiomyopathy is the most significant prognostic factor and the main cause of death. Our findings suggest that the present survey can extend our understanding of the clinical features of this rare disease.


Assuntos
Cardiomiopatias/genética , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Músculo Esquelético/metabolismo , Cardiomiopatias/epidemiologia , Cardiomiopatias/patologia , Feminino , Regulação da Expressão Gênica , Doença de Depósito de Glicogênio Tipo IIb/epidemiologia , Doença de Depósito de Glicogênio Tipo IIb/patologia , Humanos , Japão/epidemiologia , Masculino , Músculo Esquelético/patologia , Caracteres Sexuais , Inquéritos e Questionários
7.
Neuropathology ; 36(6): 561-565, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27145725

RESUMO

Danon disease, primary lysosome-associated membrane protein-2 (LAMP-2) deficiency, is characterized clinically by cardiomyopathy, myopathy and intellectual disability in boys. Because Danon disease is inherited in an X-linked dominant fashion, males are more severely affected than females, who usually have only cardiomyopathy without myopathy or intellectual disability; moreover, the onset of symptoms in females is usually in adulthood. We describe a girl with Danon disease who presented with hypertrophic cardiomyopathy and Wolff-Parkinson-White (WPW) syndrome at 12 years of age. Subsequently, she showed signs of mild learning disability and intellectual disability on psychological examinations. She had a de novo novel mutation in the LAMP-2 gene and harbored an identical c.749C > A (p.Ser250X) variant, resulting in a stop codon in exon 6. She showed decreased, but not completely absent LAMP-2 expression on immunohistochemical and Western blot analyses of a skeletal muscle biopsy specimen, which has been suggested to be caused by a 50% reduction in LAMP-2 expression (LAMP-2 haploinsufficiency) in female patients with Danon disease caused by a heterozygous null mutation. To our knowledge, our patient is one of the youngest female patients to have been given a diagnosis of Danon disease. In addition, this is the first documented case in a girl that was clearly associated with intellectual disability, which is very rare in females with Danon disease. Our findings suggest that studies of female patients with Danon disease can extend our understanding of the clinical features of this rare disease.


Assuntos
Cardiomiopatias/etiologia , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Deficiência Intelectual/etiologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Mutação , Adolescente , Feminino , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/patologia , Doença de Depósito de Glicogênio Tipo IIb/psicologia , Humanos , Músculo Esquelético/patologia , Síndrome de Wolff-Parkinson-White/complicações
8.
Mol Ther Nucleic Acids ; 33: 404-412, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37547287

RESUMO

Fukutin (FKTN) c.647+2084G>T creates a pseudo-exon with a premature stop codon, which causes Fukuyama congenital muscular dystrophy (FCMD). We aimed to ameliorate aberrant splicing of FKTN caused by this variant. We screened compounds focusing on splicing regulation using the c.647+2084G>T splicing reporter and discovered that the branchpoint, which is essential for splicing reactions, could be a potential therapeutic target. To confirm the effectiveness of branchpoints as targets for exon skipping, we designed branchpoint-targeted antisense oligonucleotides (BP-AONs). This restored normal FKTN mRNA and protein production in FCMD patient myotubes. We identified a functional BP by detecting splicing intermediates and creating BP mutations in the FKTN reporter gene; this BP was non-redundant and sufficiently blocked by BP-AONs. Next, a BP-AON was designed for a different FCMD-causing variant, which induces pathogenic exon trapping by a common SINE-VNTR-Alu-type retrotransposon. Notably, this BP-AON also restored normal FKTN mRNA and protein production in FCMD patient myotubes. Our findings suggest that BPs could be potential targets in exon-skipping therapeutic strategies for genetic disorders.

9.
Sci Rep ; 12(1): 21806, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526893

RESUMO

GNE myopathy is a distal myopathy caused by biallelic variants in GNE, which encodes a protein involved in sialic acid biosynthesis. Compound heterozygosity of the second most frequent variant among Japanese GNE myopathy patients, GNE c.620A>T encoding p.D207V, occurs in the expected number of patients; however, homozygotes for this variant are rare; three patients identified while 238 homozygotes are estimated to exist in Japan. The aim of this study was to elucidate the pathomechanism caused by c.620A>T. Identity-by-descent mapping indicated two distinct c.620A>T haplotypes, which were not correlated with age onset or development of myopathy. Patients homozygous for c.620A>T had mildly decreased sialylation, and no additional pathogenic variants in GNE or abnormalities in transcript structure or expression of other genes related to sialic acid biosynthesis in skeletal muscle. Structural modeling of full-length GNE dimers revealed that the variant amino acid localized close to the monomer interface, but far from catalytic sites, suggesting functions in enzymatic product transfer between the epimerase and kinase domains on GNE oligomerization. In conclusion, homozygotes for c.620A>T rarely develop myopathy, while symptoms occur in compound heterozygotes, probably because of mildly decreased sialylation, due to partial defects in oligomerization and product trafficking by the mutated GNE protein.


Assuntos
Miopatias Distais , Doenças Musculares , Humanos , Miopatias Distais/genética , Ácido N-Acetilneuramínico , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação
10.
Orphanet J Rare Dis ; 16(1): 284, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167565

RESUMO

BACKGROUND: Collagen VI-related dystrophy spans a clinical continuum from severe Ullrich congenital muscular dystrophy to milder Bethlem myopathy. This disease is caused by causative variants in COL6A1, COL6A2, or COL6A3. Most reported causative variants are de novo; therefore, to identify possible associated causative variants, comprehensive large cohort studies are required for different ethnicities. METHODS: We retrospectively reviewed clinical information, muscle histology, and genetic analyses from 147 Japanese patients representing 130 families, whose samples were sent for diagnosis to the National Center of Neurology and Psychiatry between July 1979 and January 2020. Genetic analyses were conducted by gene-based resequencing, targeted panel resequencing, and whole exome sequencing, in combination with cDNA analysis. RESULTS: Of a total of 130 families with 1-5 members with collagen VI-related dystrophy, 120 had mono-allelic and 10 had bi-allelic variants in COL6A1, COL6A2, or COL6A3. Among them, 60 variants were in COL6A1, 57 in COL6A2, and 23 in COL6A3, including 37 novel variants. Mono-allelic variants were classified into four groups: missense (69, 58%), splicing (40, 33%), small in-frame deletion (7, 6%), and large genomic deletion (4, 3%). Variants in the triple helical domains accounted for 88% (105/120) of all mono-allelic variants. CONCLUSIONS: We report the causative variant profile of a large set of Japanese cases of collagen VI-related dystrophy. This dataset can be used as a reference to support genetic diagnosis and variant-specific treatment.


Assuntos
Colágeno Tipo VI , Distrofias Musculares , Colágeno Tipo VI/genética , Humanos , Japão , Distrofias Musculares/genética , Mutação , Estudos Retrospectivos , Deleção de Sequência
11.
J Neuropathol Exp Neurol ; 79(12): 1370-1375, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33184643

RESUMO

Typical central core disease (CCD) is characterized pathologically by the presence of a core and is accompanied by type 1 fiber uniformity. Congenital neuromuscular disease with uniform type 1 fiber (CNMDU1) is characterized pathologically by the presence of type 1 fiber uniformity but without the abnormal structural changes in muscle fibers. Interestingly, typical CCD and 40% of CNMDU1 cases are caused by the same mutations in RYR1, and thus CNMDU1 has been considered an early precursor to CCD. To better understand the nature of CNMDU1, we re-evaluated muscle biopsies from 16 patients with CNMDU1 using immunohistochemistry to RYR1, triadin and TOM20, and compared this to muscle biopsies from 36 typical CCD patients. In CCD, RYR1, and triadin were present in the core regions, while TOM20 was absent in the core regions. Interestingly, in 5 CNMDU1 cases with the RYR1 mutation, RYR1, and triadin were similarly present in core-like areas, while TOM20 was absent in the subsarcolemmal region. Furthermore, there was a correlation between the core position and the disease duration or progression-the older patients in more advanced stages had more centralized cores. Our results indicate that CNMDU1 due to RYR1 mutation is a de facto core myopathy.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Miopatia da Parte Central/patologia , Proteínas de Transporte/genética , Pré-Escolar , Humanos , Proteínas Musculares/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
12.
Neurology ; 94(23): e2441-e2447, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467133

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is a heterogenetic disorder predominantly characterized by progressive facial and scapular muscle weakness. Patients with FSHD either have a contraction of the D4Z4 repeat on chromosome 4q35 or mutations in D4Z4 chromatin modifiers SMCHD1 and DNMT3B, both causing D4Z4 chromatin relaxation and inappropriate expression of the D4Z4-encoded DUX4 gene in skeletal muscle. In this study, we tested the hypothesis whether LRIF1, a known SMCHD1 protein interactor, is a disease gene for idiopathic FSHD2. METHODS: Clinical examination of a patient with idiopathic FSHD2 was combined with pathologic muscle biopsy examination and with genetic, epigenetic, and molecular studies. RESULTS: A homozygous LRIF1 mutation was identified in a patient with a clinical phenotype consistent with FSHD. This mutation resulted in the absence of the long isoform of LRIF1 protein, D4Z4 chromatin relaxation, and DUX4 and DUX4 target gene expression in myonuclei, all molecular and epigenetic hallmarks of FSHD. In concordance, LRIF1 was shown to bind to the D4Z4 repeat, and knockdown of the LRIF1 long isoform in muscle cells results in DUX4 and DUX4 target gene expression. CONCLUSION: LRIF1 is a bona fide disease gene for FSHD2. This study further reinforces the unifying genetic mechanism, which postulates that FSHD is caused by D4Z4 chromatin relaxation, resulting in inappropriate DUX4 expression in skeletal muscle.


Assuntos
Proteínas de Ciclo Celular/genética , Distrofia Muscular Facioescapuloumeral/genética , Biópsia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos Par 4/genética , Códon sem Sentido , Consanguinidade , Fibroblastos , Mutação da Fase de Leitura , Duplicação Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Linhagem , Isoformas de Proteínas/genética , Sequências Repetitivas de Ácido Nucleico
13.
Neuromuscul Disord ; 18(12): 959-61, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18952429

RESUMO

Four-and-a-half LIM domain 1 gene (FHL1) has recently been identified as the causative gene for reducing body myopathy (RBM), X-linked scapuloperoneal myopathy (SPM) and X-linked myopathy with postural muscle atrophy (XMPMA). Rigid spine is a common clinical feature of the three diseases. We searched for FHL1 mutations in eighteen patients clinically diagnosed as rigid spine syndrome (RSS). We identified one RSS patient with FHL1 mutation. Reducing bodies were observed in few fibers of the patient's muscle sample. Amount of FHL1 protein was decreased on immunoblotting. In conclusion, FHL1 can be one of the causative genes for RSS.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Doenças da Coluna Vertebral/metabolismo , Adolescente , Genes Dominantes , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM , Masculino , Proteínas Musculares/genética , Músculo Esquelético/patologia , Mutação , Doenças da Coluna Vertebral/diagnóstico , Doenças da Coluna Vertebral/genética , Síndrome
14.
EBioMedicine ; 15: 193-202, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28043812

RESUMO

Congenital muscular dystrophies with collagen VI deficiency are inherited muscle disorders with a broad spectrum of clinical presentation and are caused by mutations in one of COL6A1-3 genes. Muscle pathology is characterized by fiber size variation and increased interstitial fibrosis and adipogenesis. In this study, we define critical events that contribute to muscle weakness and fibrosis in a mouse model with collagen VI deficiency. The Col6a1GT/GT mice develop non-progressive weakness from younger age, accompanied by stunted muscle growth due to reduced IGF-1 signaling activity. In addition, the Col6a1GT/GT mice have high numbers of interstitial skeletal muscle mesenchymal progenitor cells, which dramatically increase with repeated myofiber necrosis/regeneration. Our results suggest that impaired neonatal muscle growth and the activation of the mesenchymal cells in skeletal muscles contribute to the pathology of collagen VI deficient muscular dystrophy, and more importantly, provide the insights on the therapeutic strategies for collagen VI deficiency.


Assuntos
Colágeno Tipo VI/deficiência , Debilidade Muscular/genética , Debilidade Muscular/patologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Alelos , Animais , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Genótipo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/patologia , Distrofia Muscular Animal , Mutação , Fenótipo , Transdução de Sinais
15.
J Neuropathol Exp Neurol ; 64(4): 334-40, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15835269

RESUMO

The dysferlin gene is defective in Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B). Dysferlin is a sarcolemmal protein that is implicated in calcium-dependent membrane repair. Affixin (beta-parvin) is a novel, integrin-linked kinase-binding protein that is involved in the linkage between integrin and the cytoskeleton. Here we show that affixin is a dysferlin binding protein that colocalizes with dysferlin at the sarcolemma of normal human skeletal muscle. The immunoreactivity of affixin was reduced in sarcolemma of MM and LGMD2B muscles, although the total amount of the affixin protein was normal. Altered immunoreactivity of affixin was also observed in other muscle diseases including LGMD1C, where both affixin and dysferlin showed quite similar changes with a reduction of sarcolemmal staining with or without cytoplasmic accumulations. Colocalization of dysferlin and affixin was confirmed by immunofluorescence analysis using dysferlin-expressing C2 myoblasts. Wild-type and mutant dysferlin colocalized with endogenous affixin. The interaction of dysferlin and affixin was confirmed by immunoprecipitation study using normal human and mouse skeletal muscles. Using immunoprecipitation with deletion mutants of dysferlin, we have identified that C-terminal region of dysferlin is an apparent binding site for affixin. We also found N-terminal calponin homology domain of affixin as a binding site for dysferlin. Our results suggest that affixin may participate in membrane repair with dysferlin.


Assuntos
Actinina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo , Sarcolema/metabolismo , Actinina/genética , Animais , Linhagem Celular , Disferlina , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Camundongos , Proteínas Musculares/genética , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estrutura Terciária de Proteína , Sarcolema/química
16.
Neuromuscul Disord ; 15(5): 342-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15833426

RESUMO

Glycosylation defects of alpha-dystroglycan (alpha-DG) cause various muscular dystrophies. We performed clinical, pathological and genetic analyses of 62 Japanese patients with congenital muscular dystrophy, whose skeletal muscle showed deficiency of glycosylated form of alpha-DG. We found, the first Japanese patient with congenital muscular dystrophy 1C with a novel compound heterozygous mutation in the fukutin-related protein gene. Fukuyama-type congenital muscular dystrophy was genetically confirmed in 54 of 62 patients. Two patients with muscle-eye-brain disease and one Walker-Warburg syndrome were also genetically confirmed. Four patients had no mutation in any known genes associated with glycosylation of alpha-DG. Interestingly, the molecular mass of alpha-DG in the skeletal muscle was similar and was reduced to approximately 90 kDa among these patients, even though the causative gene and the clinico-pathological severity were different. This result suggests that other factors can modify clinical features of the patients with glycosylation defects of alpha-DG.


Assuntos
Distroglicanas/deficiência , Distrofias Musculares/metabolismo , Western Blotting , Encéfalo/patologia , Encéfalo/fisiopatologia , Pré-Escolar , Análise Mutacional de DNA , Distroglicanas/genética , Eletroencefalografia/métodos , Feminino , Glicosilação , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Imuno-Histoquímica/métodos , Lactente , Japão/epidemiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Pentosiltransferases , Polimorfismo Conformacional de Fita Simples , Proteínas/genética , Proteínas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Coloração e Rotulagem/métodos
17.
Neurol Genet ; 1(4): e33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27066570

RESUMO

OBJECTIVE: To determine the genetic variants in patients with dystroglycanopathy (DGP) and assess the pathogenicity of these variants. METHODS: A total of 20 patients with DGP were identified by immunohistochemistry or Western blot analysis. Whole-exome sequencing (WES) was performed using patient samples. The pathogenicity of the variants identified was evaluated on the basis of the phenotypic recovery in a knockout (KO) haploid human cell line by transfection with mutated POMGNT2 cDNA and on the basis of the in vitro enzymatic activity of mutated proteins. RESULTS: WES identified homozygous and compound heterozygous missense variants in POMGNT2 in 3 patients with the milder limb-girdle muscular dystrophy (LGMD) and intellectual disability without brain malformation. The 2 identified variants were located in the putative glycosyltransferase domain of POMGNT2, which affected its enzymatic activity. Mutated POMGNT2 cDNAs failed to rescue the phenotype of POMGNT2-KO cells. CONCLUSIONS: Novel variants in POMGNT2 are associated with milder forms of LGMD. The findings of this study expand the clinical and pathologic spectrum of DGP associated with POMGNT2 variants from the severest Walker-Warburg syndrome to the mildest LGMD phenotypes. The simple method to verify pathogenesis of variants may allow researchers to evaluate any variants present in all of the known causative genes and the variants in novel candidate genes to detect DGPs, particularly without using patients' specimens.

18.
Skelet Muscle ; 5: 29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322222

RESUMO

BACKGROUND: Transport protein particle (TRAPP) is a multiprotein complex involved in endoplasmic reticulum-to-Golgi trafficking. Zebrafish with a mutation in the TRAPPC11 orthologue showed hepatomegaly with steatosis and defects in visual system development. In humans, TRAPPC11 mutations have been reported in only three families showing limb-girdle muscular dystrophy (LGMD) or myopathy with movement disorders and intellectual disability. METHODS: We screened muscular dystrophy genes using next-generation sequencing and performed associated molecular and biochemical analyses in a patient with fatty liver and cataract in addition to infantile-onset muscle weakness. RESULTS: We identified the first Asian patient with TRAPPC11 mutations. Muscle pathology demonstrated typical dystrophic changes and liver biopsy revealed steatosis. The patient carried compound heterozygous mutations of a previously reported missense and a novel splice-site mutation. The splice-site change produced two aberrantly-spliced transcripts that were both predicted to result in translational frameshift and truncated proteins. Full-length TRAPPC11 protein was undetectable on immunoblotting. CONCLUSION: This report widens the phenotype of TRAPPC11-opathy as the patient showed the following: (1) congenital muscular dystrophy phenotype rather than LGMD; (2) steatosis and infantile-onset cataract, both not observed in previously reported patients; but (3) no ataxia or abnormal movement, clearly indicating that TRAPPC11 plays a physiological role in multiple tissues in human.

19.
Neuromuscul Disord ; 13(9): 708-11, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14561493

RESUMO

Danon disease, primary lysosome-associated membrane protein-2 (LAMP-2) deficiency, is histologically characterized by unusual vacuoles bound by membranes with sarcolemmal features in skeletal muscle. We studied skeletal muscle specimens from a male patient with genetically confirmed Danon disease who had two muscle biopsies, at age 20 months and 16 years, and from his mother with cardiomyopathy but without clinically apparent skeletal myopathy. In the patient, the number of vacuoles increased over the 14-year interval between biopsies, suggesting that the number of vacuolated fibers increases with age, and correlates with the development of muscle symptoms. In contrast, in the muscle biopsy from the mother there were no vacuoles even though she had decreased LAMP-2.


Assuntos
Antígenos CD/metabolismo , Doenças Musculares , Adolescente , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Proteínas de Membrana Lisossomal , Masculino , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia
20.
J Biochem ; 135(6): 709-12, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15213246

RESUMO

Fukuyama-type congenital muscular dystrophy and congenital muscular dystrophy 1C are congenital muscular dystrophies that commonly display reduced levels of glycosylation of alpha-dystroglycan in skeletal muscle. The genes responsible for these disorders are fukutin and fukutin-related protein (FKRP), respectively. Both gene products are thought to be glycosyltransferases, but their functions have not been established. In this study, we determined their subcellular localizations in cultured skeletal myocytes. FKRP localizes in rough endoplasmic reticulum, while fukutin localizes in the cis-Golgi compartment. FKRP was also localized in rough endoplasmic reticulum in skeletal muscle biopsy sample. Our data suggest that fukutin and FKRP may be involved at different steps in O-mannosylglycan synthesis of alpha-dystroglycan, and FKRP is most likely involved in the initial step in this synthesis.


Assuntos
Células Musculares/citologia , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Adulto , Biópsia , Células Cultivadas , Distroglicanas/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Masculino , Proteínas de Membrana , Músculo Esquelético/química , Músculo Esquelético/citologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Pentosiltransferases , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa