Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(31): E4326-35, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195742

RESUMO

Synaptosomal-associated protein of 25 kDa (SNAP-25) is a key molecule in the soluble N-ethylmaleimide-sensitive factor attachment protein (SNARE) complex mediating fast Ca(2+)-triggered release of hormones and neurotransmitters, and both splice variants, SNAP-25a and SNAP-25b, can participate in this process. Here we explore the hypothesis that minor alterations in the machinery mediating regulated membrane fusion can increase the susceptibility for metabolic disease and precede obesity and type 2 diabetes. Thus, we used a mouse mutant engineered to express normal levels of SNAP-25 but only SNAP-25a. These SNAP-25b-deficient mice were exposed to either a control or a high-fat/high-sucrose diet. Monitoring of food intake, body weight, hypothalamic function, and lipid and glucose homeostases showed that SNAP-25b-deficient mice fed with control diet developed hyperglycemia, liver steatosis, and adipocyte hypertrophy, conditions dramatically exacerbated when combined with the high-fat/high-sucrose diet. Thus, modified SNARE function regulating stimulus-dependent exocytosis can increase the vulnerability to and even provoke metabolic disease. When combined with a high-fat/high-sucrose diet, this vulnerability resulted in diabesity. Our SNAP-25b-deficient mouse may represent a diabesity model.


Assuntos
Doenças Metabólicas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Glicemia/metabolismo , Peso Corporal , Dislipidemias/patologia , Ingestão de Energia , Metabolismo Energético , Comportamento Alimentar , Feminino , Homeostase , Hipertrofia , Hipotálamo/metabolismo , Insulina/metabolismo , Secreção de Insulina , Leptina/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Doenças Metabólicas/sangue , Camundongos Obesos , Fenótipo , Receptores para Leptina/metabolismo , Proteína 25 Associada a Sinaptossoma/deficiência
2.
Int J Neuropsychopharmacol ; 19(6)2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26657176

RESUMO

BACKGROUND: The psychotomimetic phencyclidine (PCP) produces behavioral symptoms similar to those observed in schizophrenia, accompanied by increased motor activity. The dopamine and adenosine 3',5'-cyclic monophosphate-regulated phosphoprotein of 32kDa (DARPP-32) is enriched in the medium spiny neurons (MSNs) of the striatum and has been implicated in the actions of PCP. We examined the effects of deletion of DARPP-32 in distinct populations of striatal MSNs, on the ability of PCP to induce motor activation and memory deficit. METHODS: The effects of PCP were examined in mice with conditional knockout of DARPP-32 in the MSNs of the direct, or indirect pathway. DARPP-32 phosphorylation was determined by Western blotting. The motor stimulant effects of PCP were determined by measuring locomotion following acute and chronic administration. Memory deficit was evaluated using the passive avoidance test. RESULTS: Loss of DARPP-32 in direct MSNs prevents PCP-induced phosphorylation and abolishes the motor stimulation effects of PCP. In contrast, lack of DARPP-32 in indirect MSNs does not affect the ability of PCP to promote DARPP-32 phosphorylation and to increase motor activity. The impairment in passive avoidance induced by PCP is independent of the expression of DARPP-32 in direct or indirect MSNs. CONCLUSIONS: The increase in DARPP-32 phosphorylation induced by PCP occurs selectively in the MSNs of the direct pathway, which are also specifically involved in the motor stimulant effects of this drug. The memory deficit induced by PCP is not linked to the expression of DARPP-32 in striatal MSNs.

3.
Neural Plast ; 2015: 370432, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257960

RESUMO

Stimulating regeneration in the brain has the potential to rescue neuronal networks and counteract progressive pathological changes in Alzheimer's disease (AD). This study investigated whether drugs with different mechanisms of action could enhance neurogenesis and improve cognition in mice receiving human neural stem cell (hNSC) transplants. Six- to nine-month-old AD Tg2576 mice were treated for five weeks with the amyloid-modulatory and neurotrophic drug (+)-phenserine or with the partial α7 nicotinic receptor (nAChR) agonist JN403, combined with bilateral intrahippocampal hNSC transplantation. We observed improved spatial memory in hNSC-transplanted non-drug-treated Tg2576 mice but not in those receiving drugs, and this was accompanied by an increased number of Doublecortin- (DCX-) positive cells in the dentate gyrus, a surrogate marker for newly generated neurons. Treatment with (+)-phenserine did however improve graft survival in the hippocampus. An accumulation of α7 nAChR-expressing astrocytes was observed around the injection site, suggesting their involvement in repair and scarring processes. Interestingly, JN403 treatment decreased the number of α7 nAChR-expressing astrocytes, correlating with a reduction in the number of DCX-positive cells in the dentate gyrus. We conclude that transplanting hNSCs enhances endogenous neurogenesis and prevents further cognitive deterioration in Tg2576 mice, while simultaneous treatments with (+)-phenserine or JN403 result in countertherapeutic effects.


Assuntos
Doença de Alzheimer/psicologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/antagonistas & inibidores , Cognição , Células-Tronco Neurais/transplante , Neurogênese , Transplante de Células-Tronco , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Carbamatos/farmacologia , Proliferação de Células , Proteína Duplacortina , Feminino , Hipocampo/cirurgia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Regeneração Nervosa , Agonistas Nicotínicos/farmacologia , Fisostigmina/análogos & derivados , Fisostigmina/farmacologia , Quinuclidinas/farmacologia
4.
Int J Neuropsychopharmacol ; 17(1): 149-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24074141

RESUMO

It has been suggested that the favorable side-effect profiles of atypical antipsychotics (e.g. clozapine and amisulpride) are related to their ∼100-fold faster dissociation from dopamine D2 receptors (D2R) compared with typical antipsychotics (e.g. haloperidol and chlorpromazine). Fast dissociation would entail rapidly reversible antagonism; however, this has not been thoroughly studied using functional assays. We compared the reversibilities of D2R antagonism by 17 compounds using an electrophysiological method to measure dopamine-evoked potassium channel activation via D2R. Varying rates and amplitudes of D2R response recovery were observed following antagonist removal. Whereas recovery rates differed 15-fold between atypical drugs, recovery from clozapine and amisulpride antagonism was, unexpectedly, less than twofold faster than from chlorpromazine. The recovery amplitude correlated with calculated water solubility and lipid/water distribution coefficients, suggesting variable drug partitioning into cell membranes. Our data do not support the notion that the rate of reversibility of D2R antagonism is what distinguishes atypical from typical antipsychotics.


Assuntos
Antipsicóticos/classificação , Antipsicóticos/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Animais , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos , Canais de Potássio/metabolismo , Solubilidade , Xenopus
5.
J Neurosci ; 32(2): 436-51, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22238080

RESUMO

Prenatal exposure to infection has been linked to increased risk of neurodevelopmental brain disorders, and recent evidence implicates altered dopaminergic development in this association. However, since the relative risk size of prenatal infection appears relatively small with respect to long-term neuropsychiatric outcomes, it is likely that this prenatal insult interacts with other factors in shaping the risk of postnatal brain dysfunctions. In the present study, we show that the neuropathological consequences of prenatal viral-like immune activation are exacerbated in offspring with genetic predisposition to dopaminergic abnormalities induced by mutations in Nurr1, a transcription factor highly essential for normal dopaminergic development. We combined a mouse model of heterozygous genetic deletion of Nurr1 with a model of prenatal immune challenge by the viral mimetic poly(I:C) (polyriboinosinic polyribocytidilic acid). In our gene-environment interaction model, we demonstrate that the combination of the genetic and environmental factors not only exerts additive effects on locomotor hyperactivity and sensorimotor gating deficits, but further produces synergistic effects in the development of impaired attentional shifting and sustained attention. We further demonstrate that the combination of the two factors is necessary to trigger maldevelopment of prefrontal cortical and ventral striatal dopamine systems. Our findings provide evidence for specific gene-environment interactions in the emergence of enduring attentional impairments and neuronal abnormalities pertinent to dopamine-associated brain disorders such as schizophrenia and attention deficit/hyperactivity disorder, and further emphasize a critical role of abnormal dopaminergic development in these etiopathological processes.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/imunologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/virologia , Doenças Autoimunes do Sistema Nervoso/genética , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Neurocognitivos/virologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia/genética , Esquizofrenia/imunologia , Esquizofrenia/virologia , Viroses/complicações , Viroses/imunologia
6.
Psychopharmacology (Berl) ; 240(8): 1789-1804, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37394539

RESUMO

BACKGROUND: Major depressive disorder (MDD) is defined as a complex mental disorder which is characterized by a pervasive low mood and aversion to activity. Several types of neurotransmitter systems e.g. serotonergic, glutamatergic and noradrenergic systems have been suggested to play an important role in the origination of depression, but neurotrophins such as brain derived neurotrophic factor (BDNF) have also been implicated in the disease process. OBJECTIVES: The purpose of this study was to examine the effects of a newly developed class of molecules, characterized as positive allosteric modulators of neurotrophin/Trk receptor mediated signaling (Trk-PAM), on neurotransmitter release and depression-like behavior in vivo. METHODS: The effect of and possible interaction of neurotrophin/Trk signaling pathways with serotonergic and glutamatergic systems in the modulation of depression-related responses was studied using newly developed Trk-PAM compounds (ACD855, ACD856 and AC26845), as well as ketamine and fluoxetine in the forced swim test (FST) in rodents. Moreover, in vivo microdialysis in freely moving rats was used to assess changes in neurotransmitter levels in the rat. RESULTS: The results from the study show that several different compounds, which all potentiate Trk-receptor mediated signaling, display antidepressant-like activity in the FST. Moreover, the data also indicate that the effects of both fluoxetine and ketamine in the FST, both used in clinical practice, are mediated via BDNF/TrkB signaling, which could have implications for novel therapies in MDD. CONCLUSIONS: Trk-PAMs could provide an interesting avenue for the development of novel therapeutics in this area.


Assuntos
Transtorno Depressivo Maior , Ketamina , Ratos , Animais , Fluoxetina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Ketamina/farmacologia , Antidepressivos/farmacologia , Receptor trkB/metabolismo
7.
FASEB J ; 25(3): 1069-75, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21106935

RESUMO

Ethanol alters neural activity through interaction with multiple neurotransmitters and neuromodulators. The endogenous opioid system seems to play a key role, since the opioid receptor antagonist naltrexone (ReVia®) attenuates craving for alcohol. We recently reported that ethanol and acetaldehyde, the first product of ethanol metabolism, affect transcription of opioid system genes in human SH-SY5Y neuroblastoma cells. In the current study, potential epigenetic mechanisms were investigated to clarify these effects on prodynorphin gene expression. DNA methylation was analyzed by bisulfite pyrosequencing, and chromatin immunoprecipitation was used to assess putative specific histone modifications at the prodynorphin gene promoter. The results demonstrated a temporal relationship between selective chromatin modifications induced by ethanol and acetaldehyde and changes in prodynorphin gene expression quantitated by real-time qPCR. DNA methylation was not altered in any of the experimental conditions used. The epigenetic changes may precede gene transcription, and histone modifications might keep the prodynorphin gene in a poised state for later reactivation. A link has been observed between gene expression alterations and selective epigenetic modulation in the prodynorphin promoter region, demonstrating a specificity of the changes induced by ethanol and acetaldehyde. The latter may be mediating ethanol effects at the genomic level.


Assuntos
Acetaldeído/farmacologia , Metilação de DNA/efeitos dos fármacos , Encefalinas/genética , Epigenômica , Etanol/farmacologia , Regiões Promotoras Genéticas/fisiologia , Precursores de Proteínas/genética , Linhagem Celular Tumoral , Depressores do Sistema Nervoso Central/farmacologia , Cromatina/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma
8.
Proc Natl Acad Sci U S A ; 106(48): 20476-81, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19915139

RESUMO

Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction.


Assuntos
Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Proteínas da Mielina/fisiologia , Prosencéfalo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Eletrofisiologia , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nogo , Receptores do Fator de Necrose Tumoral/metabolismo , Teste de Desempenho do Rota-Rod , Transgenes/genética
9.
PLoS Genet ; 4(11): e1000278, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19043548

RESUMO

Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes.


Assuntos
Éxons/genética , Duplicação Gênica , Neurônios/fisiologia , Proteína 25 Associada a Sinaptossoma/genética , Processamento Alternativo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas do Domínio Duplacortina , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo
10.
Behav Brain Res ; 405: 113178, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607166

RESUMO

There is evidence that interaction between the neuropeptide galanin and the 5-HT1A receptor represents an integrative mechanism in the regulation of serotonergic neurotransmission. Thus, in rats intracerebroventricular (i.c.v.) galanin did not impair retention in the passive avoidance (PA) test 24 h after training, but attenuated the retention deficit caused by subcutaneous (s.c.) administration of the 5-HT1A receptor agonist 8-OH-DPAT. This impairment has been linked to postsynaptic 5-HT1A receptor activation. To confirm these results in mice, galanin was infused i.c.v. (1 nmol/mouse) in C57BL/6/Bkl mice 30 min prior to training followed by s.c. injection (0.3 mg/kg) of 8-OH-DPAT or saline 15 min before PA training. In line with previous results, i.c.v. galanin significantly attenuated the PA impairment caused by 5-HT1A receptor activation in mice. To study if the galanin 5-HT1A receptor interaction involved the dorsal hippocampus, galanin (1 nmol/mouse) was directly infused into this brain region alone or in combination with s.c. 8-OH-DPAT. However, unlike i.c.v. galanin, galanin infusion into the dorsal hippocampus alone impaired PA retention and failed to attenuate the 8-OH-DPAT-mediated PA impairment. These results indicate that the ability of i.c.v. galanin to modify 5-HT1A receptor activation is not directly mediated via receptor interactions in the dorsal hippocampus. Instead, the galanin-mediated PA impairment suggests an important inhibitory role of galanin receptors in the dorsal hippocampus for acquisition (encoding) and/or consolidation of emotional memory. In addition, the interaction between galanin and 5-HT1A receptors probably involves a wide serotonergic network that is important for the integration of emotional and cognitive behaviors.


Assuntos
Emoções , Galanina/farmacologia , Hipocampo/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Memória/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Galanina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL
11.
J Neurosci Res ; 88(10): 2284-93, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20175204

RESUMO

The immediate-early gene Nurr1 is a member of the inducible orphan nuclear receptor family. Nurr1 is essential to the differentiation, maturation, and maintenance of midbrain dopaminergic neurons and is expressed in different brain regions. We have reported that adult mice with reduced Nurr1 expression displayed an increase in immobility response to acute stress. These mice were also deficient in the retention of emotional memory. Thus, Nurr1 expression seems to be relevant to normal cognitive processes. To investigate the response of Nurr1 to a stress stimulus, Nurr1 mRNA expression was examined by in situ hybridization in adult mice using a depression-like behavior paradigm, the forced swim test. The Nurr1 gene was rapidly and widely up-regulated throughout the brain, including cortical areas (i.e., prefrontal cortex, primary and secondary visual cortex, primary auditory cortex, and secondary somatosensory cortex), hippocampus (dentate gyrus, CA1, CA2, and CA3), and midbrain (substantia nigra pars compacta and ventral tegmental area) at 30 min and 3 hr after the forced swim test. Dopamine content was reduced in prefrontal cortex and midbrain following swim stress. These results suggest that the increase in Nurr1 expression might be a compensatory mechanism to counteract the changes in forebrain dopamine transmission in coping with acute stress.


Assuntos
Adaptação Psicológica/fisiologia , Córtex Cerebral/metabolismo , Depressão/metabolismo , Sistema Límbico/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Estresse Psicológico/metabolismo , Doença Aguda , Envelhecimento , Animais , Autorradiografia , Western Blotting , Dopamina/metabolismo , Hibridização In Situ , Masculino , Camundongos , RNA Mensageiro/metabolismo , Natação , Fatores de Tempo
12.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31919522

RESUMO

Adult neurogenesis, the production of newborn neurons from neural stem cells (NSCs) has been suggested to be decreased in patients with schizophrenia. A similar finding was observed in an animal model of schizophrenia, as indicated by decreased bromodeoxyuridine (BrdU) labelling cells in response to a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist. The antipsychotic drug clozapine was shown to counteract the observed decrease in BrdU-labelled cells in hippocampal dentate gyrus (DG). However, phenotypic determination by immunohistochemistry analysis could not reveal whether BrdU-positive cells were indeed NSCs. Using a previously established cell model for analysing NSC protection in vitro, we investigated a protective effect of clozapine on NSCs. Primary NSCs were isolated from the mouse subventricular zone (SVZ), we show that clozapine had a NSC protective activity alone, as evident by employing an ATP cell viability assay. In contrast, haloperidol did not show any NSC protective properties. Subsequently, cells were exposed to the non-competitive NMDA-receptor antagonist ketamine. Clozapine, but not haloperidol, had a NSC protective/anti-apoptotic activity against ketamine-induced cytotoxicity. The observed NSC protective activity of clozapine was associated with increased expression of the anti-apoptotic marker Bcl-2, decreased expression of the pro-apoptotic cleaved form of caspase-3 and associated with decreased expression of the autophagosome marker 1A/1B-light chain 3 (LC3-II). Collectively, our findings suggest that clozapine may have a protective/anti-apoptotic effect on NSCs, supporting previous in vivo observations, indicating a neurogenesis-promoting activity for clozapine. If the data are further confirmed in vivo, the results may encourage an expanded use of clozapine to restore impaired neurogenesis in schizophrenia.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Clozapina/farmacologia , Antagonistas de Aminoácidos Excitatórios/toxicidade , Ketamina/toxicidade , Ventrículos Laterais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Caspase 3/metabolismo , Células Cultivadas , Haloperidol/farmacologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais
13.
Neurosci Biobehav Rev ; 33(2): 181-90, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18824021

RESUMO

Beat-to-beat fluctuations of heart rate (HR) convey information of the brain state with the cardiac time series reflecting the flow of efferent nerve traffic of the autonomic nervous system. Instantaneous HR was studied in mice during exposure to novelty and the expression of fear conditioned to an auditory cue as affective challenge to characterize baseline dynamics and conditioned adjustments to learned fear. These studies included pharmacological and genetic interventions of brain systems implicated in aversive emotional states, the corticotropin-releasing factor (CRF) system and the serotonin (5-HT)1A receptor. Non-linear analyses of neuroautonomic cardiac control provide for functionally adequate measures of dynamical properties. Both CRF1 and 5-HT1A receptor agonists elicited profound sympatho-vagal antagonism with pathological HR dynamics indicative of central autonomic dysregulation via mechanisms resulting in impaired fear adjustment. Non-linear measures provide for a qualitative assessment of dynamical features with regard to physiological or pathological state, are crucial for the translation of results from mouse to man, and may improve our understanding of brain-heart interactions for autonomic dysregulation in affective disorders.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Sistema Cardiovascular/fisiopatologia , Hormônio Liberador da Corticotropina/metabolismo , Emoções , Frequência Cardíaca , Transtornos do Humor/fisiopatologia , Receptor 5-HT1A de Serotonina/metabolismo , Animais , Encéfalo/fisiopatologia , Tronco Encefálico/fisiopatologia , Sistema Cardiovascular/metabolismo , Medo/psicologia , Camundongos , Transtornos do Humor/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina
14.
Hippocampus ; 19(12): 1187-98, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19309036

RESUMO

Cholinergic and GABAergic neurons in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) projecting to the hippocampus, constitute the septohippocampal projection, which is important for hippocampal-dependent learning and memory. There is also evidence for an extrinsic as well as an intrinsic glutamatergic network within the MS/vDB. GABAergic and cholinergic septohippocampal neurons express the serotonergic 5-HT(1A) receptor and most likely also glutamatergic NMDA receptors. The aim of the present study was to examine whether septal 5-HT(1A) receptors are important for hippocampal-dependent long-term memory and whether these receptors interact with glutamatergic NMDA receptor transmission in a manner important for hippocampal-dependent spatial memory. Intraseptal infusion of the 5-HT(1A) receptor agonist (R)-8-OH-DPAT (1 or 4 microg/rat) did not affect spatial learning in the water maze task but impaired emotional memory in the passive avoidance task at the higher dose tested (4 microg/rat). While intraseptal administration of (R)-8-OH-DPAT (4 microg) combined with a subthreshold dose of the NMDA receptor antagonist D-AP5 (1 microg) only marginally affected spatial acquisition, it produced a profound impairment in spatial memory. In conclusion, septal 5-HT(1A) receptors appears to play a more prominent role in emotional than in spatial memory. Importantly, septal 5-HT(1A) and NMDA receptors appear to interact in a manner, which is particularly critical for the expression or retrieval of hippocampal-dependent long-term spatial memory. It is proposed that NMDA receptor hypofunction in the septal area may unmask a negative effect of 5-HT(1A) receptor activation on memory, which may be clinically relevant.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Septo do Cérebro/fisiologia , Percepção Espacial/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/administração & dosagem , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Relação Dose-Resposta a Droga , Emoções/efeitos dos fármacos , Emoções/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Aprendizagem/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Septo do Cérebro/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina , Agonistas do Receptor de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/farmacologia , Percepção Espacial/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Fatores de Tempo
15.
Int J Neuropsychopharmacol ; 12(2): 243-55, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18684341

RESUMO

A number of studies indicate that glutamatergic N-methyl-D-aspartate (NMDA) neurotransmission is disturbed in schizophrenia partly based on the findings that NMDA receptor antagonists such as phencyclidine (PCP) can reproduce a schizophrenia-like syndrome in both humans and rodents. This study investigated whether repeated administration of low doses of PCP can induce cognitive dysfunctions in mice at doses which produce no sensorimotor disturbances. In addition, the effects on cognition were related to the expression of two genes, Arc and spinophilin, which have been related to neuronal plasticity and learning. Adult male C57Bl/6J mice received daily s.c. doses of PCP (0.5-2.0 mg/kg) or saline for 7 d. Testing was performed 24 h after the last day of treatment. Only the 2.0 mg/kg PCP dose produced a consistent impairment in spatial learning and working memory performed in the water-maze task without any apparent sensorimotor deficits. Importantly, the 2.0 mg/kg PCP dose produced no impairment in a non-spatial learning paradigm in the water-maze task. PCP treatment altered Arc mRNA levels in the hippocampus and retrosplenial agranular cortex while leaving the striatum and prefrontal cortex unaffected. The mRNA expression of spinophilin was down-regulated in striatum by repeated PCP treatment. These results demonstrate that repeated treatment with low doses of PCP in mice can produce specific cognitive deficits which are associated with alterations in gene expression in brain regions that appear to play a role in the pathophysiology of schizophrenia. These results suggest that the low-dose PCP model may have significant potential in characterizing the behavioural and molecular mechanisms underlying cognitive deficits seen in schizophrenia patients.


Assuntos
Cognição/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Alucinógenos/farmacologia , Fenciclidina/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Teste de Desempenho do Rota-Rod/métodos , Comportamento Espacial/efeitos dos fármacos
16.
FASEB J ; 22(3): 662-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17934066

RESUMO

Ethanol (EtOH) alters neural activity through interaction with various neurotransmitters and neuromodulators. The endogenous opioid system seems to play a key role in the activities of EtOH, since the opioid antagonist naltrexone (ReVia) attenuates craving. We have investigated the transcriptional regulation of opioid system genes in response to EtOH exposure for up to 96 h in human neuroblastoma SH-SY5Y cells using quantitative real-time polymerase chain reaction. We observed a significant decrease in the expression of opioid peptide precursors (proopiomelanocortin, proenkephalin, and prodynorphin) and of the kappa opioid receptor after 48 and 72 h of EtOH exposure (10 and 40 mM). These alterations were not present when the EtOH metabolism was blocked by 4-methylpyrazole. To evaluate whether the effects evoked by EtOH were possibly due to the first product of EtOH metabolism, cells were exposed to 0.4 mM acetaldehyde. We observed the same pattern of changes for prodynorphin, proenkephalin, and the kappa opioid receptor as after 72 h exposure to EtOH. These results contribute to our understanding of EtOH action at a cellular level and provide evidence of the role of acetaldehyde in mediating some of the EtOH-induced effects.


Assuntos
Acetaldeído/farmacologia , Etanol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Neuroblastoma , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Acetaldeído/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Etanol/farmacologia , Fomepizol , Humanos , Pirazóis/farmacologia , Receptores Opioides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Brain Behav Immun ; 23(6): 733-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19362585

RESUMO

Epidemiological studies suggest that early life infections may contribute to the development of psychiatric disorders characterized by cognitive deficits. Here, we studied the effects of a neonatal influenza A/WSN/33 virus infection on locomotor activity, working memory and emotional behavior in adult mice. In addition to wild type mice, immunodeficient (Tap1(-/-)) mice lacking functional CD8(+) T cells, were included in the study to model the potential influence of a genetic deficit relating to virus clearance. Three to four months after the infection, infected Tap1(-/-) mice, but not wild type mice, exhibited deficits in working memory as well as increased rearing activity and anxiety. In the medial prefrontal cortices of these infected Tap1(-/-) mice reduced levels of type III Nrg1 transcripts were observed supporting a role for neuregulin 1 signaling in neuronal circuits involved in working memory. Virus replication, distribution or clearance did not differ between the two genotypes. The lack of CD8(+) T cells, however, appeared to contribute to a more pronounced glia response in Tap1(-/-) than in wild type mice. Thus, the present study suggest that the risk of developing deficits in cognitive and emotional behavior following a CNS infection during brain development is influenced by genetic variation in genes involved in the immune response.


Assuntos
Animais Recém-Nascidos , Vírus da Influenza A , Memória de Curto Prazo/fisiologia , Proteínas do Tecido Nervoso/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/psicologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Ansiedade/genética , Ansiedade/psicologia , Encéfalo/patologia , Encéfalo/virologia , Sinais (Psicologia) , Imuno-Histoquímica , Inflamação/genética , Inflamação/patologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Neuregulina-1 , Infecções por Orthomyxoviridae/metabolismo , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Eur Neuropsychopharmacol ; 29(5): 616-628, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30910381

RESUMO

Schizophrenia is associated with cognitive impairments related to hypofunction in glutamatergic N-methyl-D-aspartate receptor (NMDAR) transmission. Phencyclidine (PCP), a non-competitive NMDAR antagonist, models schizophrenia-like behavioral symptoms including cognitive deficits in rodents. This study examined the effects of PCP on emotional memory function examined in the passive avoidance (PA) task in mice and the ability of typical and atypical antipsychotic drugs (APDs) to rectify the PCP-mediated impairment. Pre-training administration of PCP (0.5, 1, 2 or 3 mg/kg) dose-dependently interfered with memory consolidation in the PA task. In contrast, PCP was ineffective when administered after training, and immediately before the retention test indicating that NMDAR blockade interferes with memory encoding mechanisms. The typical APD haloperidol and the dopamine D2/3 receptor antagonist raclopride failed to block the PCP-induced PA impairment suggesting a negligible role of D2 receptors in the PCP impairment. In contrast, the memory impairment was blocked by the atypical APDs clozapine and olanzapine in a dose-dependent manner while risperidone was effective only at the highest dose tested (1 mg/kg). The PCP-induced impairment involves 5-HT1A receptor mechanisms since the antagonist NAD-299 blocked the memory impairment caused by PCP and the ability of clozapine to attenuate the impairment by PCP. These results indicate that atypical but not typical APDs can ameliorate NMDAR-mediated memory impairments and support the view that atypical APDs such as clozapine can modulate glutamatergic memory dysfunctions through 5-HT1A receptor mechanisms. These findings suggest that atypical APDs may improve cognitive impairments related to glutamatergic dysfunction relevant for emotional memories in schizophrenia.


Assuntos
Antipsicóticos/uso terapêutico , Clozapina/uso terapêutico , Regulação Emocional/efeitos dos fármacos , Haloperidol/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Fenciclidina/toxicidade , Animais , Antipsicóticos/farmacologia , Clozapina/farmacologia , Relação Dose-Resposta a Droga , Regulação Emocional/fisiologia , Antagonistas de Aminoácidos Excitatórios/toxicidade , Haloperidol/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/uso terapêutico
19.
Hippocampus ; 18(1): 11-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17696168

RESUMO

The inferior performance of DBA/2 mice when compared to C57BL/6 mice in hippocampus-dependent behavioral tasks including contextual fear conditioning has been attributed to impaired hippocampal function. However, DBA/2J mice have been reported to perform similarly or even better than C57BL/6J mice in the passive avoidance (PA) task that most likely also depends on hippocampal function. The apparent discrepancy in PA versus fear conditioning performance in these two strains of mice was investigated using an automated PA system. The aim was to determine whether these two mouse strains utilize different strategies involving a different contribution of hippocampal mechanisms to encode PA. C57BL/6J mice exhibited significantly longer retention latencies than DBA/2J mice when tested 24 h after training irrespective of the circadian cycle. Dorsohippocampal NMDA receptor inhibition by local injection of the selective antagonist DL-2-amino-5-phosphonovaleric acid (AP5, 3.2 microg/mouse) before training resulted in impaired PA retention in C57BL/6J but not in DBA/2J mice. Furthermore, nonreinforced pre-exposure to the PA system before training caused a latent inhibition-like reduction of retention latencies in C57BL/6J, whereas it improved PA retention in DBA/2J mice. These pre-exposure experiments facilitated the discrimination of hippocampal involvement without local pharmacological intervention. The results indicate differences in PA learning between these two strains based on a different NMDA receptor involvement in the dorsal hippocampus in this emotional learning task. We hypothesize that mouse strains can differ in their PA learning performance based on their relative ability to form associations on the basis of unisensory versus multisensory contextual/spatial cues that involve hippocampal processing.


Assuntos
Aprendizagem da Esquiva/fisiologia , Hipocampo/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Inibição Psicológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Especificidade da Espécie
20.
Eur J Neurosci ; 28(1): 41-50, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18662333

RESUMO

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic neurotoxicity and behavioral impairment in rodents. Previous studies suggest that oxidative stress, via free radical production, is involved in MPTP-induced neurotoxicity. The MPTP-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. It has been reported previously that EGb761 prevents dopaminergic neurotoxicity of MPTP. This compound is multifunctional via different mechanisms. Here, we report the neuroprotective effect of EGb761 against oxidative stress induced by MPTP in C57BL/6J mice. EGb761 is a patented and well-defined mixture of active compounds extracted from Ginkgo biloba leaves, with neuroprotective effects, exerted probably via its antioxidant or free radical scavenger action. MPTP administration resulted in a significant decrease in striatal dopamine levels and tyrosine hydroxylase immunostaining in the striatum and substantia nigra pars compacta. Mice receiving EGb761 had significantly attenuated MPTP-induced loss of striatal dopamine levels and tyrosine hydroxylase immunostaining in the striatum and substantia nigra pars compacta. The neuroprotective effect of EGb761 against MPTP neurotoxicity is associated with blockade of lipid peroxidation and reduction of superoxide radical production (indicated by a down-regulation of Mn-superoxide dismutase activity), both of which are indices of oxidative stress. Behavioral analyses showed that EGb761 improved MPTP-induced impairment of locomotion in a manner that correlated with enhancement of striatal dopamine levels. These findings suggest that, in mice, EGb761 attenuates MPTP-induced neurodegeneration of the nigrostriatal pathway and that an inhibitory effect against oxidative stress may be partly responsible for its observed neuroprotective effects.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Animais , Antioxidantes/metabolismo , Corpo Estriado/patologia , Ginkgo biloba/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Extratos Vegetais/química , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa