Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2314797121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194452

RESUMO

Assessing the ergodicity of graphene liquid cell electron microscope measurements, we report that loop states of circular DNA interconvert reversibly and that loop numbers follow the Boltzmann distribution expected for this molecule in bulk solution, provided that the electron dose is low (80-keV electron energy and electron dose rate 1-20 e- Å-2 s-1). This imaging technique appears to act as a "slow motion" camera that reveals equilibrated distributions by imaging the time average of a few molecules without the need to image a spatial ensemble.


Assuntos
Elétrons , Grafite , Microscopia Eletrônica , Movimento (Física) , Conformação de Ácido Nucleico
2.
Nano Lett ; 23(8): 3645-3652, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36876977

RESUMO

The shaping of matter into desired nanometric structures with on-demand functionalities can enhance the miniaturization of devices in nanotechnology. Herein, strong light-matter interaction was used as an optical lithographic tool to tailor two-dimensional (2D) matter into nanoscale architectures. We transformed 2D black phosphorus (BP) into ultrafine, well-defined, beyond-diffraction-limit nanostructures of ten times smaller size and a hundred times smaller spacing than the incident, femtosecond-pulsed light wavelength. Consequently, nanoribbons and nanocubes/cuboids scaling tens of nanometers were formed by the structured ablation along the extremely confined periodic light fields originating from modulation instability, the tailoring process of which was visualized in real time via light-coupled in situ transmission electron microscopy. The current findings on the controllable nanoscale shaping of BP will enable exotic physical phenomena and further advance the optical lithographic techniques for 2D materials.

3.
Small ; 19(10): e2206547, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541782

RESUMO

Two new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core-core and terminal-terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements. In blend films, the hole transfer (HT) from YBO-2O/-FO to the polymer donor PM6 is studied in detail by transient absorption spectroscopy, demonstrating efficient HT from YBO-FO to PM6 with their suitable energy level alignment. Despite the simplified synthesis, YBO-FO demonstrates photovoltaic performance similar to that of Y6, exhibiting a power conversion efficiency of 15.01%. Overall, this design strategy not only simplifies the synthetic procedures but also adjusts the electrical properties by modifying the intermolecular packing and energy level alignment, suggesting a novel simplified molecular design of Y6 derivatives.

4.
Small ; 19(17): e2206668, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703517

RESUMO

Low-dimensional Cu(I)-based metal halide materials are gaining attention due to their low toxicity, high stability and unique luminescence mechanism, which is mediated by self-trapped excitons (STEs). Among them, Cs5 Cu3 Cl6 I2 , which emits blue light, is a promising candidate for applications as a next-generation blue-emitting material. In this article, an optimized colloidal process to synthesize uniform Cs5 Cu3 Cl6 I2 nanocrystals (NCs) with a superior quantum yield (QY) is proposed. In addition, precise control of the synthesis parameters, enabling anisotropic growth and emission wavelength shifting is demonstrated. The synthesized Cs5 Cu3 Cl6 I2 NCs have an excellent photoluminescence (PL) retention rate, even at high temperature, and exhibit high stability over multiple heating-cooling cycles under ambient conditions. Moreover, under 850-nm femtosecond laser irradiation, the NCs exhibit three-photon absorption (3PA)-induced PL, highlighting the possibility of utilizing their nonlinear optical properties. Such thermally stable and highly luminescent Cs5 Cu3 Cl6 I2 NCs with nonlinear optical properties overcome the limitations of conventional blue-emitting nanomaterials. These findings provide insights into the mechanism of the colloidal synthesis of Cs5 Cu3 Cl6 I2 NCs and a foundation for further research.

5.
Proc Natl Acad Sci U S A ; 117(3): 1283-1292, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31911471

RESUMO

Traditional single-molecule methods do not report whole-molecule kinetic conformations, and their adaptive shape changes during the process of self-assembly. Here, using graphene liquid-cell electron microscopy with electrons of low energy at low dose, we show that this approach resolves the time dependence of conformational adaptations of macromolecules for times up to minutes, the resolution determined by motion blurring, with DNA as the test case. Single-stranded DNA molecules are observed in real time as they hybridize near the solid surface to form double-stranded helices; we contrast molecules the same length but differing in base-pair microstructure (random, blocky, and palindromic hairpin) whose key difference is that random sequences possess only one stable final state, but the others offer metastable intermediate structures. Hybridization is observed to couple with enhanced translational mobility and torsion-induced rotation of the molecule. Prevalent transient loops are observed in error-correction processes. Transient melting and other failed encounters are observed in the competitive binding of multiple single-stranded molecules. Among the intermediate states reported here, some were predicted but not observed previously, and the high incidence of looping and enhanced mobility come as surprises. The error-producing mechanisms, failed encounters, and transient intermediate states would not be easily resolved by traditional single-molecule methods. The methods generalize to visualize motions and interactions of other organic macromolecules.

6.
Entropy (Basel) ; 25(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136474

RESUMO

The paper proposes a novel artificial noise (AN) injection strategy in multiple-input single-output multiple-antenna-eavesdropper (MISOME) systems under imperfect channel estimation at the legitimate channel to achieve zero secrecy outage probability under any circumstance. The zero secrecy outage is proved to always be achievable regardless of the eavesdropper's number of antennas or location when the pair secrecy and codeword rates are chosen properly. The results show that when there is perfect channel state information, the zero-outage secrecy throughput increases with the transmit power, which is important for secrecy design. Additionally, an analysis of the secrecy throughput and secrecy energy efficiency gives further insight into the effectiveness of the proposed scheme.

7.
Environ Sci Technol ; 56(9): 5763-5774, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35442651

RESUMO

This study reexamined the mechanisms for oxidative organic degradation by the binary mixture of periodate and H2O2 (PI/H2O2) that was recently identified as a new advanced oxidation process. Our findings conflicted with the previous claims that (i) hydroxyl radical (•OH) and singlet oxygen (1O2) contributed as the primary oxidants, and (ii) •OH production resulted from H2O2 reduction by superoxide radical anion (O2•-). PI/H2O2 exhibited substantial oxidizing capacity at pH < 5, decomposing organics predominantly by •OH. The likelihood of a switch in the major oxidant under varying pH conditions was revealed. IO4- as the major PI form under acidic conditions underwent one-electron reduction by H2O2 to yield radical intermediates, whereas H2I2O104- preferentially occurring at pH > 7 caused 1O2 generation through two-electron oxidation of H2O2. PI reduction by O2•- was suggested to be a key reaction in •OH production, on the basis of the electron paramagnetic resonance detection of methyl radicals in the dimethyl sulfoxide solutions containing PI and KO2, and the absence of deuterated and 18O-labeled hydroxylated intermediates during PI activation using D2O and H218O2. Finally, simple oxyanion mixing subsequent to electrochemical PI and H2O2 production achieved organic oxidation, enabling a potential strategy to minimize the use of chemicals.


Assuntos
Peróxido de Hidrogênio , Oxidantes , Espectroscopia de Ressonância de Spin Eletrônica , Radical Hidroxila , Oxirredução , Ácido Periódico , Superóxidos/metabolismo
8.
Phys Chem Chem Phys ; 24(4): 1982-1992, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34897314

RESUMO

By taking advantage of bulk-heterojunction structures formed by blending conjugated donor polymers and non-fullerene acceptors, organic photovoltaic devices have recently attained promising power conversion efficiencies of above 18%. For optimizing organic photovoltaic devices, it is essential to understand the elementary processes that constitute light harvesters. Utilising femtosecond-resolved spectroscopic techniques that can access the timescales of locally excited (LE) state and charge-transfer (CT)/-separated (CS) states, herein we explored their photophysics in single chains of the top-notch performance donor-acceptor polymer, PM6, which has been widely used as a donor in state-of-the-art non-fullerene organic photovoltaic devices, in a single LE state per chain regime. Our observations revealed the ultrafast formation of a CT state and its equilibrium with the parent LE state. From the chain-length dependence of their lifetimes, the equilibrated states were found to idle until they reach a chain folding. At the chain folding, the CT state transforms into an interchain CT state that bifurcates into forming a CS state or annihilation within a picosecond. The observation of prevalent nonexponential behaviour in the relaxation of the transient species is attributed to the wide chain-length distribution that determines the emergence of the chain foldings in a single chain, thus, the lifetime of a LE and equilibrated CT states. Our findings indicate that the abundance of chain folding, where the generation of the "reactive" CS state is initiated from the interchain CT state, is essential for maximising charge carriers in organic photovoltaic devices based on PM6.

9.
Sensors (Basel) ; 22(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591207

RESUMO

Recently, LoRa (Long Range) technology has been drawing attention in various applications due to its long communication range and high link reliability. However, in industrial environments, these advantages are often compromised by factors such as node mobility, signal attenuation due to various obstacles, and link instability due to external signal interference. In this paper, we propose a new multi-hop LoRa protocol that can provide high reliability for data transmission by overcoming those factors in dynamic LoRa networks. This study extends the previously proposed two-hop real-time LoRa (Two-Hop RT-LoRa) protocol to address technical aspects of dynamic multi-hop networks, such as automatic configuration of multi-hop LoRa networks, dynamic topology management, and updating of real-time slot schedules. It is shown by simulation that the proposed protocol achieves high reliability of over 97% for mobile nodes and generates low control overhead in topology management and schedule updates. The protocol was also evaluated in various campus deployment scenarios. According to experiments, it could achieve high packet delivery rates of over 97% and 95%, respectively, for 1-hop nodes and 2-hop nodes against node mobility.

10.
Molecules ; 25(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059446

RESUMO

An amorphous Si (a-Si) solar cell with a back reflector composed of zinc oxide (ZnO) and silver (Ag) is potentially the most plausible and flexible solar cell if a graphite sheet is used as the substrate. Graphite supplies lightness, conductivity and flexibility to devices. When a graphite sheet is used as the substrate, carbon can diffuse into the Ag layer in the subsequent p-i-n process at 200-400 °C. To prevent this, we added an oxide layer as a carbon diffusion barrier between the carbon substrate and the back reflector. For the carbon diffusion barrier, silicon oxide (SiO2) or tin oxide (SnOx) was used. We evaluated the thermal stability of the back reflector of a carbon substrate using secondary-ion mass spectrometry (SIMS) to analyze the carbon diffusion barrier material. We confirmed the deposition characteristics, reflectance and prevention of carbon diffusion with and without the barrier. Finally, the structures were incorporated into the solar cell and their performances compared. The results showed that the back reflectors that were connected to a carbon diffusion barrier presented better performance, and the reflector with an SnOx layer presented the best performance.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Grafite/química , Energia Solar , Difusão , Condutividade Elétrica , Óxidos , Dióxido de Silício/química , Prata/química , Luz Solar , Óxido de Zinco/química
11.
Molecules ; 25(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255194

RESUMO

Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-ß (Aß) is produced via ß-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aß generation. ß-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Endocitose , Microdomínios da Membrana/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Cricetulus , Humanos , Metabolismo dos Lipídeos , Transporte Proteico , Transferrina/metabolismo
12.
Molecules ; 25(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028607

RESUMO

Accumulation of ß-amyloid (Aß) in the brain has been implicated in the pathology of Alzheimer's disease (AD). Aß is produced from the Aß precursor protein (APP) through the amyloidogenic pathway by ß-, and γ-secretase. Alternatively, APP can be cleaved by α-, and γ-secretase, precluding the production of Aß. Thus, stimulating α-secretase mediated APP processing is considered a therapeutic option not only for decreasing Aß production but for increasing neuroprotective sAPPα. We have previously reported that 7-deoxy-trans-dihydronarciclasine (E144), the active component of Lycoris chejuensis, decreases Aß production by attenuating APP level, and retarding APP maturation. It can also improve cognitive function in the AD model mouse. In this study, we further analyzed the activating effect of E144 on α-secretase. Treatment of E144 increased sAPPα, but decreased ß-secretase products from HeLa cells stably transfected with APP. E144 directly activated ADAM10 and ADAM17 in a substrate-specific manner both in cell-based and in cell-free assays. The Lineweaver-Burk plot analysis revealed that E144 enhanced the affinities of A Disintegrin and Metalloproteinases (ADAMs) towards the substrate. Consistent with this result, immunoprecipitation analysis showed that interactions of APP with ADAM10 and ADAM17 were increased by E144. Our results indicate that E144 might be a novel agent for AD treatment as a substrate-specific activator of α-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Isoquinolinas/farmacologia , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/metabolismo , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/metabolismo , Ativação Enzimática , Humanos , Isoquinolinas/química , Estrutura Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
13.
Angew Chem Int Ed Engl ; 59(18): 7089-7096, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32112494

RESUMO

Here, we propose an experimental methodology based on femtosecond-resolved fluorescence spectroscopy to measure the hydrogen (H)-bond free energy of water at protein surfaces under isothermal conditions. A demonstration was conducted by installing a non-canonical isostere of tryptophan (7-azatryptophan) at the surface of a coiled-coil protein to exploit the photoinduced proton transfer of its chromophoric moiety, 7-azaindole. The H-bond free energy of this biological water was evaluated by comparing the rates of proton transfer, sensitive to the hydration environment, at the protein surface and in bulk water, and it was found to be higher than that of bulk water by 0.4 kcal mol-1 . The free-energy difference is dominated by the entropic cost in the H-bond network among water molecules at the hydrophilic and charged protein surface. Our study opens a door to accessing the energetics and dynamics of local biological water to give insight into its roles in protein structure and function.


Assuntos
Teoria da Densidade Funcional , Proteínas/metabolismo , Termodinâmica , Água/metabolismo , Ligação de Hidrogênio , Estrutura Molecular , Proteínas/química , Prótons , Espectrometria de Fluorescência , Propriedades de Superfície , Água/química
14.
J Org Chem ; 84(11): 6737-6751, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31050290

RESUMO

Herein, we report chemoselective trifluoroethylation routes of unmasked 2-arylquinazolin-4(3 H)-ones using mesityl(2,2,2-trifluoroethyl)iodonium triflate at room temperature. Homologous C-, O-, and N-functionalized subclasses are accessed in a straightforward manner with a wide substrate scope. These chemoselective branching events are driven by Pd-catalyzed ortho-selective C-H activation at the pendant aryl ring and base-promoted reactivity modulation of the amide group, leveraging the intrinsic directing capability and competing pronucleophilicity of the quinazolin-4(3 H)-one framework. Furthermore, outstanding photostability of the quinazolin-4(3 H)-one family associated with nonradiative decay is presented.

15.
Sensors (Basel) ; 19(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862121

RESUMO

In industrial monitoring and control applications, a server often has to send a command to a node or group of nodes in wireless sensor networks. Flooding achieves high reliability of message delivery by allowing nodes to take the redundancy of receiving the identical message multiple times. However, nodes consume much energy due to this redundancy and the long duty cycle. A reliable slotted broadcast protocol (RSBP) tackles this problem by allocating a distinct broadcast slot (BS) to every node using a tree topology. Not only does it remove collision, but it also minimizes energy consumption such that every node remains active only during its parent's broadcast slot and its own broadcast slot to receive and rebroadcast a message, respectively. However, it suffers from low reliability in harsh environments due to the compete removal of redundancy and low responsiveness to the changes in network topology due to the global scheduling of slots. Our approach allocates one distinct broadcast sharable slot (BSS) to each tree level, thus making a BSS schedule topology-independent. Then, nodes at the same level compete to rebroadcast a message to nodes at one level higher within the BSS, thus allowing the redundancy. In addition, it uses a slot-scheduled transmission within BSS that can further improve reliability by reducing message collisions and also enables the precise management of energy. According to simulations and experiments, the proposed approach can achieve high reliability comparable to flooding and low-energy consumption comparable to RSBP.

16.
Molecules ; 24(15)2019 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382678

RESUMO

The nuclear factor (NF)-κB family of transcriptional factors plays a critical role in inflammation, immunoregulation, cell differentiation, and tumorigenesis. This study aims to investigate the role of methylation of genes encoding for the NF-κB family in breast cancer. We analyze the DNA methylation status of the NFKB1 gene and the RELA gene in breast cancer using pyrosequencing. The expression of NF-κB1 and RELA proteins is assessed and the level of RNA transcripts in frozen tissue is determined using RT-PCR. There is no statistically significant difference in the methylation status of the NFKB1 and the RELA genes between tumors and normal tissues. The methylation status of the NFKB1 gene and the RELA gene is not significantly associated with the levels of NF-κB1 transcripts in tumor tissues. However, the methylation level of the RELA gene is significantly associated with the level of tumor necrosis factor (TNF)-α. In addition, the level of NF-κB1 transcripts was associated with the levels of TNF-α and IL-4. In tumors with positive TNF-α, the increased methylation level of the RELA gene is significantly associated with the positive expression of NF-κB1 transcripts. These results demonstrate that the level of the RELA gene methylation is related to the levels of NF-κB1 transcripts under the influence of TNF-α. Further study is needed to determine how TNF-α is involved in the methylation of the RELA gene and the subsequent expression of NF-κB1.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Feminino , Humanos , Fator de Transcrição RelA/metabolismo
17.
Phys Chem Chem Phys ; 20(17): 11673-11681, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675523

RESUMO

Carbon dots (CDs) have potential applications in various fields such as energy, catalysis, and bioimaging due to their strong and tuneable photoluminescence (PL), low toxicity, and robust chemical inertness. Although several PL mechanisms have been proposed, the origin of PL in CDs is still in debate because of the ensembled nature of the heterogeneous luminophores present in the CDs. To unravel the origin of PL in CDs, we performed time-resolved spectroscopy on two types of CDs: nitrogen-doped (N-CD) and boron-nitrogen co-doped (BN-CD). The PL decays were fitted by stretched exponential functions to estimate the distribution of the decay kinetics in the CDs, which have different PL lifetime distributions. Both CDs displayed main, blue emission decaying in 15 ns, which originates from the dominant molecular state. The analysis of the non-exponential PL decay using stretched exponential fits revealed that the functional surface luminophores are of less variety but of more environmental heterogeneity and have much lower populations in BN-CD than in N-CD.

18.
Molecules ; 23(1)2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29315254

RESUMO

Activated leukocyte cell adhesion molecule (ALCAM) has been implicated in tumorigenesis. In this study, we studied DNA methylation status of the ALCAM gene using pyrosequencing in breast cancer tissues. We analyzed the association between the methylation status of the ALCAM gene and its expression. Also, the effects of inflammation on the ALCAM gene methylation and its expression were investigated. The ALCAM gene methylation was associated with the ALCAM transcripts in tumor tissues. The methylation status of the ALCAM gene was not significantly different between tumor and normal tissues. The level of ALCAM transcripts was associated with the expression of TNFα, NF-κB p50, IL-4, and intratumoral inflammation. The IHC expression of ALCAM was associated with histologic grade, HER2 overexpression and molecular subtype. The expression of TNFα, NF-κB p50, and IL-4 showed significant association with the clinicopathologic characteristics. In conclusion, the ALCAM gene methylation was related to the level of ALCAM transcripts. Also, the level of ALCAM transcripts was associated with the inflammatory markers in breast cancer. Our results suggest that the methylation of the ALCAM gene contributes to the decreased expression of ALCAM. Also, ALCAM is linked to the inflammatory response in breast cancer.


Assuntos
Molécula de Adesão de Leucócito Ativado/metabolismo , Antígenos CD/genética , Neoplasias da Mama/diagnóstico , Moléculas de Adesão Celular Neuronais/genética , Metilação de DNA , Proteínas Fetais/genética , Regiões Promotoras Genéticas , Molécula de Adesão de Leucócito Ativado/genética , Idoso , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Biologia Computacional/métodos , Feminino , Proteínas Fetais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-4/metabolismo , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Prognóstico
19.
J Am Chem Soc ; 139(42): 15088-15093, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28988480

RESUMO

Materials exhibiting excitation-wavelength-dependent photoluminescence, PL, are useful in a range of biomedical and optoelectronic applications. This paper describes a nanoparticulate material whose PL is tunable across the entire visible range and is achieved without adjusting particle size, any postsynthetic doping, or surface modification. A straightforward thermal decomposition of rhenium (VII) oxide precursor yields nanoparticles that comprise Re atoms at different oxidation states. Studies of time-resolved emission spectra and DFT calculations both indicate that tunable PL of such mixed-valence particles originates from the presence of multiple emissive states that become "active" at different excitation wavelengths. In addition, the nanoparticles exhibit photocatalytic activity that, under visible-light irradiation, is superior to that of TiO2 nanomaterials.

20.
Biochem Biophys Res Commun ; 490(2): 486-491, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28624365

RESUMO

The pathological hallmark of Alzheimer's disease (AD) is associated with the accumulation of amyloid-ß (Aß) derived from proteolytic processing of amyloid-ß precursor protein (APP). APP undergoes post-translational modification including N- and O-glycosylation. O-GlcNAcylation is a novel type of O-glycosylation, mediated by O-GlcNAc transferase attaching O-ß-N-acetylglucosamine (O-GlcNAc) to serine/threonine residues of the target proteins. O-GlcNAc is removed by O-GlcNAcase. We have previously reported that increasing O-GlcNAcylated APP using the O-GlcNAcase inhibitor, PUGNAc, increases its trafficking rate to the plasma membrane and decreases its endocytosis rate, resulting in decreased Aß production. However, O-GlcNAc modification sites in APP are unknown. In this study, we mutated three predicted O-GlcNAc modification threonine residues of APP into alanines (T291A, T292A, and T576A) and expressed them in HeLa cells. These APP mutants showed reduced O-GlcNAcylation levels, indicating that these sites were endogenously O-GlcNAcylated. Thr 576 was the major O-GlcNAcylation site when cell was treated with PUGNAc. We also showed that the effects of PUGNAc on APP trafficking to the plasma membrane and Aß production were prevented in the T576A mutant. These results implicate Thr 576 as the major O-GlcNAcylation site in APP and indicate that O-GlcNAcylation of this residue regulates its trafficking and processing. Thus, specific O-GlcNAcylation of APP at Thr 576 may be a novel and promising drug target for AD therapeutics.


Assuntos
Acetilglucosamina/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Acilação , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/análise , Precursor de Proteína beta-Amiloide/genética , Membrana Celular/metabolismo , Glicosilação , Células HeLa , Humanos , Mutação Puntual , Processamento de Proteína Pós-Traducional , Transporte Proteico , Treonina/análise , Treonina/genética , Treonina/metabolismo , Rede trans-Golgi/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa