Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 191(4): 2334-2352, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702576

RESUMO

PHYTOCHROME-INTERACTING FACTORs (PIFs) repress photosynthetic genes partly by upregulating REPRESSOR OF PHOTOSYNTHETIC GENES 1 (RPGE1) and RPGE2. However, it is unknown how RPGEs inhibit gene expression at the molecular level. Here, we show that Arabidopsis (Arabidopsis thaliana) RPGE overexpression lines display extensive similarities to the golden2-like 1 (glk1)/glk2 double mutant at the phenotypic and transcriptomic levels, prompting us to hypothesize that there is a close molecular relationship between RPGEs and chloroplast development-regulating GLK transcription factors. Indeed, we found that RPGE1 disrupts the homodimerization of GLK1 by interacting with its dimerization domain and debilitates the DNA-binding activity of GLK1. The interaction was not restricted to the Arabidopsis RPGE1-GLK1 pair, but rather extended to RPGE-GLK homolog pairs across species, providing a molecular basis for the pale green leaves of Arabidopsis transgenic lines expressing a rice (Oryza sativa) RPGE homolog. Our discovery of RPGE-GLK regulatory pairs suggests that any condition leading to an increase in RPGE levels would decrease the expression levels of GLK target genes. Consistently, we found that shade, which upregulates the RPGE mRNA by stabilizing PIFs, represses the expression of photosynthetic genes partly by inhibiting the DNA-binding activity of GLK1. Taken together, these results indicate that RPGE-GLK regulatory pairs regulate photosynthetic gene expression downstream of PIFs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fotossíntese/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 75(1): 241-257, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824096

RESUMO

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fitocromo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Cell ; 32(1): 186-205, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732705

RESUMO

PHYTOCHROME INTERACTING FACTORs (PIFs) are a group of basic helix-loop-helix (bHLH) transcription factors that repress plant light responses. PIF8 is one of the less-characterized Arabidopsis (Arabidopsis thaliana) PIFs, whose putative orthologs are conserved in other plant species. PIF8 possesses a bHLH motif and an active phytochrome B motif but not an active phytochrome A motif. Consistent with this motif composition, PIF8 binds to G-box elements and interacts with the Pfr form of phyB but only very weakly, if at all, with that of phyA. PIF8 differs, however, from other PIFs in its protein accumulation pattern and functional roles in different light conditions. First, PIF8 inhibits phyA-induced seed germination, suppression of hypocotyl elongation, and randomization of hypocotyl growth orientation in far-red light, but it does not inhibit phyB-induced red light responses. Second, PIF8 protein accumulates more in far-red light than in darkness or red light. This is distinct from the pattern observed with PIF3, which accumulates more in darkness. This PIF8 accumulation pattern requires degradation of PIF8 by CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in darkness, inhibition of COP1 by phyA in far-red light, and promotion of PIF8 degradation by phyB in red light. Together, our results indicate that PIF8 is a genuine PIF that represses phyA-mediated light responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Fitocromo A/metabolismo , Fitocromo/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Hipocótilo , Fitocromo B , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Dev Cell ; 57(16): 2009-2025.e6, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35901789

RESUMO

Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth. Brassinosteroid levels did not follow the same trend. PIF4 and COP1 increased their nuclear abundance in both organs under shade or warmth. PIF4 directly bound the BES1 promoter to enhance its activity but indirectly reduced BES1 expression. COP1 physically interacted with the BES1 protein, promoting its proteasome degradation in the cotyledons. COP1 had the opposite effect in the hypocotyl, demonstrating organ-specific regulatory networks. Our work indicates that shade or warmth reduces BES1 activity by transcriptional and post-translational regulation to inhibit cotyledon cell expansion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo
6.
Neurol Res ; 41(10): 883-892, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31203746

RESUMO

Objectives: Peroxisome proliferator-activated receptors (PPARs) control wound healing processes in damaged tissues. PPAR agonists have neuroprotective effects in spinal cord injury (SCI); however, isotype-specific roles of PPARs are not well understood. Therefore, we evaluated protein expression changes for three isotypes of PPARs at different time points and locations relative to the epicenter after SCI in rats. Methods: A 10-g rod was dropped on the spinal cord which located at the T10 vertebra of rats from a height of 6.25, 12.5, or 50 mm using New York University impactor. We collected the spinal cord at 6, 12, 24, and 72 h and 1, 3, and 5 weeks after SCI. The protein expression of PPARs was analyzed using western blot. Results: The protein expression of PPAR-α declined gradually up to 5 weeks at the epicenter. PPAR-ß/δ expression increased from 3 days to 5 weeks at the caudal region, but decreased at the epicenter in the severe injury group. PPAR-γ expression increased significantly at all regions in all three injury groups up to 5 weeks after SCI and increased to a greater extent in the severe injury group. In addition, PPAR-ß/δ controlled protein expression of PPAR-α positively, and -γ negatively. Conclusions: The present results suggest that different PPAR isotypes have varied protein expression patterns at the epicenter and in adjacent regions after SCI. Our results suggest that PPARs may have overlapping but distinct roles. These findings will be useful for further studies investigating PPARs in neurological disorders including SCI.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
7.
Toxicol Res ; 24(4): 289-295, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32038807

RESUMO

Toxicology screening following treatment with astemizole, a histamine receptor antagonist, at oral doses of 0, 10, 30 and 60 mg/kg was carried out in male cynomolgus monkeys (Macaca fascicularis). No dose-related changes in mortality, clinical signs, body weight changes, food consumption, or urine analysis occurred in any animal compared to the vehicle control. However, the high-dose group showed a decrease in BUN and ALP compared to vehicle control group. In addition, the levels of TG, AST, ALP and CK increased. Although astemizole did not produce significant toxicological changes at any dose tested, we predict that it can cause toxicological changes of the liver and heart based on the changes in the serum parameters related to the heart and liver. The Action Potential Duration (APD) was prolonged in the heart of 60 mg/kg treatment group compared to the control group. The APD increase in 60 mg/kg treatment group along the other related changes in toxicological parameters imply that astemizole has major cardiotoxic effects in the cynomolgus monkey. This study is a valuable assessment for predicting the general toxicity and cardiotoxic effects of antihistamine drugs using nonhuman primates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa