Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366561

RESUMO

BACKGROUND: Lysins (cell wall hydrolases) targeting Gram-negative organisms require engineering to permeabilize the outer membrane and access subjacent peptidoglycan to facilitate killing. In the current study, the potential clinical utility for engineered lysin, CF-370, was examined in vitro and in vivo against Gram-negative pathogens important in human infections. METHODS: MICs and bactericidal activity were determined using standard methods. An in vivo proof-of-concept efficacy study was conducted using a rabbit acute pneumonia model caused by Pseudomonas aeruginosa. RESULTS: CF-370 exhibited potent antimicrobial activity, with MIC50/90 values (in µg/mL) for: P. aeruginosa, 1/2; Acinetobacter baumannii, 1/1; Escherichia coli, 0.25/1; Klebsiella pneumoniae, 2/4; Enterobacter cloacae 1/4; and Stenotrophomonas maltophilia 2/8. CF-370 furthermore demonstrated: i) bactericidal activity; (ii) activity in serum; iii) a low propensity for resistance; iv) anti-biofilm activity; and v) synergy with antibiotics. In the pneumonia model, CF-370 alone decreased bacterial densities in lungs, kidneys and spleen vs. vehicle control, and demonstrated significantly increased efficacy when combined with meropenem (vs either agent alone). CONCLUSIONS: CF-370 is the first engineered lysin described with potent broad spectrum in vitro activity against multiple clinically-relevant Gram-negative pathogens, as well as potent in vivo efficacy in an animal model of severe invasive multi-system infection.

2.
Antimicrob Agents Chemother ; 65(7): e0258720, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903102

RESUMO

Exebacase (CF-301) belongs to a new class of protein-based antibacterial agents, known as lysins (peptidoglycan hydrolases). Exebacase, a novel lysin with antistaphylococcal activity, is in phase 3 of clinical development. To advance into the clinic, it was necessary to develop an accurate and reproducible method for exebacase MIC determination. The Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution (BMD) method using cation-adjusted Mueller-Hinton broth (CAMHB) produced trailing MIC endpoints, and exebacase activity was diminished when frozen BMD panels were used. A modified BMD method was developed using CAMHB supplemented with 25% horse serum and 0.5 mM dl-dithiothreitol (CAMHB-HSD). Preliminary quality control (QC) ranges for Staphylococcus aureus ATCC 29213 of 0.25 to 1 µg/ml and for Enterococcus faecalis ATCC 29212 of 16 to 64 µg/ml were determined based on the results of a CLSI M23-defined MIC QC tier 1 study. These preliminary QC ranges validated the MIC data generated from a systematic study testing a discrete S. aureus strain collection using CAMHB-HSD to investigate the impact of parameters known to influence susceptibility test results and to evaluate the exebacase MIC distribution against clinical S. aureus isolates. Presentation of these data led to the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) approval of the use of CAMHB-HSD to determine exebacase susceptibility and commencement of a multilaboratory (tier 2) QC study. Use of a standard BMD method and concomitant QC testing provides confidence in the assessment of test performance to generate accurate and reproducible susceptibility data during antibacterial drug development.


Assuntos
Endopeptidases , Staphylococcus aureus , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa