RESUMO
This study investigated the antioxidant activity of radish seed oil (RSO) and its effects on the quality and storage characteristics of pork patties. To assess the antioxidant capacity of RSO, this study analyzed fatty acid composition, peroxide value (PV), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Pork patties were manufactured with the addition of RSO-0.4%, 0.8%, 1.6%, and 2.4%-and measured in terms of proximate composition, pH, water holding capacity (WHC), cooking loss (CL), color, texture profile analysis, and a sensory evaluation. Total microbial count (TMC), volatile basic nitrogen (VBN), thiobarbituric acid reactive substances (TBARS), and PV were measured at 1, 3, and 7 days of refrigerated storage. The DPPH radical scavenging activity of RSO was found to be 75.46%. In the cases of WHC and CL, there was no significant differences observed between RSO0.4%, RSO0.8%, and positive control (PC; p>0.05). Meanwhile, RSO2.4% showed significantly lower hardness, springiness, gumminess, and chewiness than PC (p<0.05), and these values tended to decrease with the addition of increasing RSO. In terms of storage characteristics, with an increase in the amount of RSO added, TMC, VBN, TBARS, and PV all decreased; among the treatment groups, RSO2.4% showed the lowest values. In conclusion, RSO exhibits antioxidant activity, but when added in large amounts, it negatively affects the quality characteristics of patties while positively impacting their storage properties, thus necessitating a balanced consideration of both outcomes. Therefore, adding 1.6% RSO is considered to be the most appropriate level for formulations to be used in practice.
RESUMO
In this study, physicochemical and antioxidant properties, and storage stability (1, 3, and 7 days) of pork patties added with edible insect powders (EIP) of four species (Larvae of Tenenbrio molitor, Protaetia brevitarsis seulensis, Allomyrina dichotoma, and Gryllus bimaculatus) as meat partial substitutes were investigated. Twenty percent of each EIP was added to pork patties, and four treatments were prepared. On the other hand, two control groups were set, one with 0.1 g of ascorbic acid and the other without anything. Adding EIP decreased water content but increased protein, fat, carbohydrate, and ash contents. In addition, the use of EIP increased the water holding capacity and texture properties as well as decreased the cooking loss. However, the sensory evaluation and storage stability were negatively affected by the addition of EIP. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity had a positive effect on storage stability. It is believed that the addition of EIP resulted in high antioxidants due to the presence of polyphenol compounds in EIP. These results indicate that EIP has great potential to be used as meat partial substitute to improve the quality improvement and antioxidant in pork patties. However, in order to improve storage stability and consumer preference, further research is needed to apply it to patties by reducing the amount of EIP or adding auxiliary ingredients.
RESUMO
The aim of study was to investigate proliferation and differentiation capacities of Hanwoo myosatellite cells for the development of Hanwoo cell cultures. From P1 to P19, the number of live cells decreased and the cell size increased. It was confirmed that the PAX7 mRNA was higher in P3 than P6 and P9 (p < 0.05). The maximum differentiation score was measured from P1 to P12. The maximum differentiation score maintained high from P1 to P10. Immunostaining was performed for both P1 and P10 cells to investigate differentiation characteristics. And there were no significant differences in differentiation characteristics between P1 and P10 cells. MYOG mRNA was low, whereas C-FOS mRNA was high (p < 0.05) in the late passage. Myosin and Tom20 protein also showed low values in the late passage (p < 0.05). In conclusion, our results suggest that it is appropriate to use P1 to P10 for the production of cultured meat using Hanwoo muscle cells. If cell culture meat production is performed without differentiation, the passage range may increase further. These results provide basic essential data required for further development of Hanwoo cell cultures, which could provide a valuable source of protein for human populations in the future.
Assuntos
Células Satélites de Músculo Esquelético , Humanos , Diferenciação Celular/genética , Carne , RNA Mensageiro , Proliferação de CélulasRESUMO
To improve culture efficiency of Hanwoo myosatellite cells, these cells were cultured at different temperatures. Hanwoo myosatellite cells were compared with C2C12 cells to observe proliferation and differentiation at culture temperatures of 37°C and 39°C and determine the possibility of using them as cultured meat. Immunofluorescence staining using Pax7 and Hoechst, both cells cultured at 37°C proliferated better than cultured at 39°C (p < 0.05). When differentiated cells were stained with myosin and Hoechst, there was no significant difference in myotube thickness and Fusion index (p > 0.05). In Western blotting analysis, Hanwoo myosatellite cells were no significant difference in the expression of myosin between cells differentiated at the two temperatures (p > 0.05). C2C12 cells were no significant difference in the expression of myosin between cells differentiated at the two temperatures (p > 0.05). In reverse transcription and quantitative polymerase chain reaction (RT-qPCR) analysis, Hanwoo myosatellite cells cultured at 39°C had significantly (p < 0.05) higher expression levels of MyHC, MYF6, and MB than those cultured at 37°C. C2C12 cells cultured at 39°C showed significantly (p < 0.05) higher expression levels of MYOG and MB than those cultured at 37°C. To increase culture efficiency of Hanwoo myosatellite cells, proliferating at 37°C and differentiating at 39°C are appropriate. Since results of temperature differences of Hanwoo myosatellite cells were similar to those of C2C12 cells, they could be used as a reference for producing cultured meat using Hanwoo satellite cells.
RESUMO
Selenium (Se) is an essential trace mineral that plays an important role in physiological processes by regulating the antioxidant defense system and enhancing immunity. Chromium is an essential mineral involved in carbohydrate and lipid metabolism and also plays a role in maintaining normal insulin function. Based on these advantages, we hypothesized that the addition of selenomethionine (SeMet) and organic chromium (OC) to broiler diets would increase Se deposition, antioxidant capacity and immune response in meat. Therefore, this study analyzed the effects of OC and SeMet on growh performance, nutrients digestibility, blood profiles, intestinal morphology, meat quality characteristics, and taxonomic analysis of broilers. A total of 168 one-day-old broiler chicken (Arbor Acres) were randomly allotted to 3 groups based on the initial body weight of 37.33 ± 0.24 g with 7 replicate per 8 birds (mixed sex). The experiments period was 28 days. Dietary treatments were folloewd: Basal diets based on corn-soybean meal (CON), basal diet supplemented with 0.2 ppm OC and 0.2 ppm SeMet (CS4), and basal diet supplemented with 0.4 ppm OC and 0.4 ppm SeMet (CS8). Supplementation of OC and SeMet did not affect on growth performance, nutrient digestibility. However, CS8 supplementation increased in duodenum villus height and villus height : crypt depth, and increased in breast meat Se deposition. In addition, CS8 group showed higher uric acid and total antioxidant status than CON group. Taxonomic analysis at phylum level revealed that Proteobacteria and Firmicutes of CS4 and CS8 were lower than CON group. In genus level, the relative abundance of fecal Lactobacillus and Enterococcus of CS4 and CS8 groups were higher than CON group. In short, 0.4 ppm OC and 0.4 ppm SeMet supplementation to broiler diet supporitng positive gut microbiome change, also enhancing antioxidant capacity, and Se deposition in breast meat.
RESUMO
There are several factors that affect the welfare and meat quality of pigs during pre-slaughter transport. Among various factors, the effects of weather conditions and loading density were studied. A total of 3,726 finishing pigs were allotted to one of nine groups arranged in a 3 × 3 factorial design according to the weather conditions (low temperature [LT], under 10°C; normal temperature [NT], 10°C-24°C; high temperature [HT], upper 24°C), and loading density (low density [LD], upper 0.43 m2/100 kg; normal density [ND], 0.37-0.43 m2/100 kg; high density [HD], under 0.37 m2/100 kg). Each treatment group follow as: LTLD, LTND, LTHD, NTLD, NTND, NTHD, HTLD, HTND, HTHD. In terms of carcass composition, pigs had the highest carcass weight and backfat thickness at LT. Comparing the HD transport to the ND transport, the meat quality indicated a lower pH and more drip loss. The incidence rate of pale, soft, exudative (PSE) pork was high in the order of the HD, LD, and the ND transport (20%, 9%, and 2%, respectively). The HT transport showed the lowest pH and greatest L* value under the given weather conditions. Pigs transported under the HTHD and LTLD conditions had the greatest rates of PSE pork (40% and 20%, respectively). Pigs exposed to HD transport had the shortest laying time and the highest overplap behavior. The LDLT transport pigs had a shorter laying time than the LDNT and LDHT transport pigs. In conclusion, too high or too low density transport is generally not excellent for meat quality or animal welfare, however it is preferable to transport at a slightly low density at high temperature and at a slightly high density at low temperature.
RESUMO
This study aimed to determine whether fermented soy sauce has a mutually synergistic effect on the quality and storage properties of pork patties, and to investigate the effects on the availability and physicochemical properties of various taste ingredients of soy sauce, a traditional Korean food ingredient. The experimental groups were as follows: Control (-): No additives; Control (+): 0.1% ascorbic acid; T1: 1% fermented soy sauce; T2: 3% fermented soy sauce; T3: 5% fermented soy sauce. No significant difference was detected in moisture, protein, and fat among the various treatment groups; however, ash content and water holding capacity increased and texture properties improved with the concentration of fermented soy sauce. The addition of fermented soy sauce during refrigerated storage for 10 days showed a positive effect on the storage properties. The peroxide value, content of thiobarbituric acid reactive substances and total phenolics, and 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity differed significantly in pork patties with different treatments and storage intervals. The effect of fermented soy sauce on the overall quality and storage properties of pork patties during refrigerated storage is relatively unknown. These findings demonstrate that the addition of fermented soy sauce improves the quality properties and antioxidant activity of pork patties.
RESUMO
Among future food problems, the demand for meat is expected to increase rapidly, but the production efficiency of meat, which is a protein source, is very low compared to other foods. To address this problem, research on the development and production of cultured meat as an alternative meat source using muscle stem cells in vitro has recently been undertaken. Many studies have been conducted on myosatellite cells for medical purposes, but studies on alternative meat production are rare. In vitro cell culture mimics the in vivo environment for cell growth. The satellite cell niche is closer to hypoxic (2% O2) than normoxic (20% O2) conditions. The aim of this study was to investigate the efficient oxygen conditions of myosatellite cell cultures for the production of cultured meat. The bovine satellite cell counts and mRNA (Pax7, Myf5 and HIF1α) levels were higher in hypoxia than normoxia (p < 0.05). Through Hoechst-positive nuclei counts, and expression of Pax7, MyoD and myosin protein by immunofluorescence, it was confirmed that muscle cells performed normal proliferation and differentiation. Myoblast fusion was higher under hypoxic conditions (p < 0.05), and the myotube diameters were also thicker (p < 0.05). In the myotube, the number of cells was high in hypoxia, and the expression of the total protein amounts, differentiation marker mRNA (myogenin, myosin and TOM20), and protein markers (myosin and TOM20) was also high. The study results demonstrated that the proliferation and differentiation of bovine myosatellite cells were promoted more highly under hypoxic conditions than under normoxic conditions. Therefore, hypoxic cultures that promote the proliferation and differentiation of bovine myosatellite cells may be an important factor in the development of cultured meat.