Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 128(1): 59-71, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33608716

RESUMO

BACKGROUND AND AIMS: Condensed tannin (CT) is an important compound in plant biological structural defence and for tolerance of herbivory and environmental stress. However, little is known of the role and location of CT within the fine roots of woody plants. To understand the role of CT in fine roots across diverse species of woody dicot, we evaluated the localization of CT that accumulated in root tissue, and examined its relationships with the stele and cortex tissue in cross-sections of roots in 20 tree species forming different microbial symbiotic groups (ectomycorrhiza and arbuscular mycorrhiza). METHODS: In a cool-temperate forest in Japan, cross-sections of sampled roots in different branching order classes, namely, first order, second to third order, fourth order, and higher than fourth order (higher order), were measured in terms of the length-based ratios of stele diameter and cortex thickness to root diameter. All root samples were then stained with ρ-dimethylaminocinnamaldehyde solution and we determined the ratio of localized CT accumulation area to the root cross-section area (CT ratio). KEY RESULTS: Stele ratio tended to increase with increasing root order, whereas cortex ratio either remained unchanged or decreased with increasing order in all species. The CT ratio was significantly positively correlated to the stele ratio and negatively correlated to the cortex ratio in second- to fourth-order roots across species during the shift from primary to secondary root growth. Ectomycorrhiza-associated species mostly had a higher stele ratio and lower cortex ratio than arbuscular mycorrhiza-associated species across root orders. Compared with arbuscular mycorrhiza species, there was greater accumulation of CT in response to changes in the root order of ectomycorrhiza species. CONCLUSIONS: Different development patterns of the stele, cortex and CT accumulation along the transition from root tip to secondary roots could be distinguished between different mycorrhizal associations. The CT in tissues in different mycorrhizal associations could help with root protection in specific branching orders during shifts in stele and cortex development before and during cork layer formation.


Assuntos
Micorrizas , Proantocianidinas , Florestas , Raízes de Plantas , Árvores
2.
Planta ; 249(2): 445-455, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30238212

RESUMO

MAIN CONCLUSION: We developed simple algorithms for reconstructing tree root system architecture using only the root point coordinate and diameter, which can be systematically obtained without digging up the root systems. Root system architecture (RSA) is strongly related to various root functions of the tree. The aim of this study was to develop a three-dimensional (3D) RSA model using systematically obtained information on root locations and root diameters at the locations. We excavated root systems of Cryptomeria japonica and systematically obtained XYZ coordinates and root diameters using a 10-cm grid. We clarified the patterns of the root point connections and developed a reconstructed root system model. We found that the root diameters farther from the stump centre are smaller. Additionally, we found that the root lengths of the segments running between the base and the connected root point were smaller than those of other root segments, and the inner angle between the base and the stump and between the base and the connected root point was narrower than for the other pairs. The new RSA model developed according to these results had average accuracies of 0.64 and 0.80 for estimates of total volume and length, respectively. The developed model can estimate 3D RSA using only root point data, which can be obtained without digging up root systems. This suggests a wide applicability of this model in root function evaluation.


Assuntos
Cryptomeria/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Algoritmos , Modelos Anatômicos
3.
J Plant Res ; 126(4): 505-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23283581

RESUMO

To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.


Assuntos
Carbono/metabolismo , Árvores/metabolismo , Água/metabolismo , Biomassa , Biometria , Ciclo do Carbono , Malásia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Solo , Árvores/crescimento & desenvolvimento , Clima Tropical
4.
J Exp Biol ; 215(Pt 10): 1633-41, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22539730

RESUMO

A honeybee informs her nestmates about the location of a profitable food source that she has visited by means of a waggle dance: a round dance and a figure-of-eight dance for a short- and long-distance food source, respectively. Consequently, the colony achieves an effective collection of food. However, it is still not fully understood how much effect the dance behavior has on the food collection, because most of the relevant experiments have been performed only in limited locations under limited experimental conditions. Here, we examined the efficacy of the waggle dances by physically preventing bees from dancing and then analyzing the changes in daily mass of the hive as an index of daily food collection. To eliminate place- and year-specific effects, the experiments were performed under fully natural conditions in three different cities in Japan from mid September to early October in three different years. Because the experiments were performed in autumn, all six of the tested colonies lost mass on most of the experimental days. When the dance was prevented, the daily reduction in mass change was greater than when the dance was allowed, i.e. the dance inhibited the reduction of the hive mass. This indicates that dance is effective for food collection. Furthermore, clear inhibition was observed on the first two days of the experiments; after that, inhibition was no longer evident. This result suggests that the bee colony adapted to the new environment.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Animais , Comportamento Animal , Dança , Comportamento Alimentar/fisiologia , Alimentos , Atividade Motora/fisiologia , Movimento , Projetos de Pesquisa , Estações do Ano , Comportamento Social
5.
Acta Biol Hung ; 63 Suppl 2: 75-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22776476

RESUMO

A honeybee informs her nestmates of the location of a flower by doing a waggle dance. The waggle dance encodes both the direction of and distance to the flower from the hive. To reveal how the waggle dance benefits the colony, we created a Markov model of bee foraging behavior and performed simulation experiments by incorporating the biological parameters that we obtained from our own observations of real bees as well as from the literature. When two feeders were each placed 400 m away from the hive in different directions, a virtual colony in which honeybees danced and correctly transferred information (a normal, real bee colony) made significantly greater numbers of successful visits to the feeders compared to a colony with inaccurate information transfer. Howerer, when five feeders were each located 400 m from the hive, the inaccurate information transfer colony performed better than the normal colony. These results suggest that dancing's ability to communicate accurate information depends on the number of feeders. Furthermore, because non-dancing colonies always made significantly fewer visits than those two colonies, we concluded that dancing behavior is beneficial for hives' ability to visit food sources.


Assuntos
Comunicação Animal , Abelhas , Comportamento Animal , Modelos Biológicos , Animais , Feminino
6.
Tree Physiol ; 38(12): 1927-1938, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452737

RESUMO

Clarifying the dynamics of fine roots is critical to understanding carbon and nutrient cycling in forest ecosystems. An optical scanner can potentially be used in studying fine-root dynamics in forest ecosystems. The present study examined image analysis procedures suitable for an optical scanner having a large (210 mm × 297 mm) root-viewing window. We proposed a protocol for analyzing whole soil images obtained by an optical scanner that cover depths of 0-210 mm. We tested our protocol using six observers with different experience in studying roots. The observers obtained data from the manual digitization of sequential soil images recorded for a Bornean tropical forest according to the protocol. Additionally, the study examined the potential tradeoff between the soil image size and accuracy of estimates of fine-root dynamics in a simple exercise. The six observers learned the protocol and obtained similar temporal patterns of fine-root growth and biomass with error of 10-20% regardless of their experience. However, there were large errors in decomposition owing to the low visibility of decomposed fine roots. The simple exercise revealed that a smaller root-viewing window (smaller than 60% of the original window) produces patterns of fine-root dynamics that are different from those for the original window size. The study showed the high applicability of our image analysis approach for whole soil images taken by optical scanners in estimating the fine-root dynamics of forest ecosystems.


Assuntos
Processamento de Imagem Assistida por Computador , Variações Dependentes do Observador , Raízes de Plantas/crescimento & desenvolvimento , Floresta Úmida , Biomassa , Diagnóstico por Imagem/métodos , Solo
7.
Sci Rep ; 7: 42102, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186141

RESUMO

Dissolved organic matter (DOM) strongly affects water quality within boreal forest ecosystems. However, how the quality of DOM itself changes spatially is not well understood. In this study, to examine how the diversity of DOM molecules varies in water moving through a boreal forest, the number of DOM molecules in different water samples, i.e., rainwater, throughfall, soil water, groundwater, and stream water was determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in Norway spruce and Scots pine stands in eastern Finland during May and June 2010. The number of molecular compounds identified by FT-ICR MS (molecular diversity) ranged from 865 to 2,194, revealing large DOM molecular diversity in the water samples. Additionally, some of the molecular compounds were shared between different water samples. The DOM molecular diversity linearly correlated with the number of low-biodegradable molecules, such as, lignin-like molecules (lignins), but not with dissolved organic carbon concentration. The number of lignins shared between different sampling locations was larger than that of any other biomolecular class. Our results suggest that low-biodegradable molecules, especially lignins, regulate spatial variations in DOM molecular diversity in boreal forests.

8.
J Environ Radioact ; 161: 73-81, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27158060

RESUMO

The nuclear accidents at Chernobyl and Fukushima released large amounts of (137)Cs radionuclides into the atmosphere which spread over large forest areas. We compared the (137)Cs concentration distribution in different parts of two coniferous forest ecosystems (needle litter, stems and at different depths in the soil) over short and long term periods in Finland and Japan. We also estimated the change in (137)Cs activity concentrations in needle and soil between 1995 and 2013 in Southern Finland based on the back-calculated (137)Cs activity concentrations. We hypothesized that if the (137)Cs activity concentrations measured in 1995 and 2013 showed a similar decline in concentration, the (137)Cs activity concentration in the ecosystem was already stable in 1995. But if not, the (137)Cs activity concentrations were still changing in 2013. Our results showed that the vertical distribution of the (137)Cs fallout in the soil was similar in Hyytiälä and Fukushima. The highest (137)Cs concentrations were observed in the uppermost surface layers of the soil, and they decreased exponentially deeper in the soil. We also observed that (137)Cs activity concentrations estimated from the samples in 1995 and 2013 in Finland showed different behavior in the surface soil layers compared to the deep soil layer. These results suggested that the (137)Cs nuclei were still mobile in the surface soil layers 27 years after the accident. Our results further indicated that, in the aboveground parts of the trees, the (137)Cs concentrations were much closer to steady-state when compared to those of the surface soil layers based on the estimated declining rates of (137)Cs concentration activity in needles which were similar in 1995 and 2013. Despite its mobility and active role in the metabolism of trees, the (137)Cs remains in the structure of the trees for decades, and there is not much exchange of (137)Cs between the heartwood and surface layers of the stem.


Assuntos
Radioisótopos de Césio/análise , Cinza Radioativa , Poluentes Radioativos do Solo/análise , Árvores/química , Acidente Nuclear de Chernobyl , Cryptomeria , Finlândia , Acidente Nuclear de Fukushima , Japão , Pinus , Folhas de Planta/química , Caules de Planta/química
9.
J Environ Radioact ; 149: 176-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26330021

RESUMO

Since the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, large areas of the forests around Fukushima have become highly contaminated by radioactive nuclides. To predict the future dynamics of radioactive cesium ((137)Cs) in the forest catchment, it is important to measure each component of its movement within the forest. Two years after the accident, we estimated the annual transportation of (137)Cs from the forest canopy to the floor by litterfall, throughfall and stemflow. Seasonal variations in (137)Cs transportation and differences between forests types were also determined. The total amount of (137)Cs transported from the canopy to the floor in two deciduous and cedar plantation forests ranged between 3.9 and 11.0 kBq m(-2) year(-1). We also observed that (137)Cs transportation with litterfall increased in the defoliation period, simply because of the increased amount of litterfall. (137)Cs transportation with throughfall and stemflow increased in the rainy season, and (137)Cs flux by litterfall was higher in cedar plantation compared with that of mixed deciduous forest, while the opposite result was obtained for stemflow.


Assuntos
Radioisótopos de Césio/análise , Florestas , Poluentes Radioativos do Solo/análise , Acidente Nuclear de Fukushima , Japão , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Monitoramento de Radiação , Chuva , Estações do Ano
10.
Sci Rep ; 4: 4175, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24569525

RESUMO

The honeybee waggle dance communicates the location of profitable food sources, usually with a certain degree of error in the directional information ranging from 10-15° at the lower margin. We simulated one-day colonial foraging to address the biological significance of information error in the waggle dance. When the error was 30° or larger, the waggle dance was not beneficial. If the error was 15°, the waggle dance was beneficial when the food sources were scarce. When the error was 10° or smaller, the waggle dance was beneficial under all the conditions tested. Our simulation also showed that precise information (0-5° error) yielded great success in finding feeders, but also caused failures at finding new feeders, i.e., a high-risk high-return strategy. The observation that actual bees perform the waggle dance with an error of 10-15° might reflect, at least in part, the maintenance of a successful yet risky foraging trade-off.


Assuntos
Comunicação Animal , Comportamento Apetitivo/fisiologia , Abelhas/fisiologia , Dança/fisiologia , Comportamento Alimentar/fisiologia , Modelos Biológicos , Comportamento Espacial/fisiologia , Animais , Simulação por Computador , Comportamento de Retorno ao Território Vital/fisiologia
11.
PLoS One ; 9(6): e97986, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24886977

RESUMO

Earthworms are important soil macrofauna inhabiting almost all ecosystems. Their biomass is large and their burrowing and ingestion of soils alters soil physicochemical properties. Because of their large biomass, earthworms are regarded as an indicator of "soil heath". However, primarily because the difficulties in quantifying their behavior, the extent of their impact on soil material flow dynamics and soil health is poorly understood. Image data, with the aid of image processing tools, are a powerful tool in quantifying the movements of objects. Image data sets are often very large and time-consuming to analyze, especially when continuously recorded and manually processed. We aimed to develop a system to quantify earthworm movement from video recordings. Our newly developed program successfully tracked the two-dimensional positions of three separate parts of the earthworm and simultaneously output the change in its body length. From the output data, we calculated the velocity of the earthworm's movement. Our program processed the image data three times faster than the manual tracking system. To date, there are no existing systems to quantify earthworm activity from continuously recorded image data. The system developed in this study will reduce input time by a factor of three compared with manual data entry and will reduce errors involved in quantifying large data sets. Furthermore, it will provide more reliable measured values, although the program is still a prototype that needs further testing and improvement. Combined with other techniques, such as measuring metabolic gas emissions from earthworm bodies, this program could provide continuous observations of earthworm behavior in response to environmental variables under laboratory conditions. In the future, this standardized method will be applied to other animals, and the quantified earthworm movement will be incorporated into models of soil material flow dynamics or behavior in response to chemical substances present in the soil.


Assuntos
Automação , Tamanho Corporal , Oligoquetos/anatomia & histologia , Animais , Movimento , Oligoquetos/fisiologia , Especificidade da Espécie , Fatores de Tempo
12.
Ecol Evol ; 4(20): 3929-39, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25505521

RESUMO

Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

13.
PLoS One ; 9(1): e84656, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465422

RESUMO

A computer program that tracks animal behavior, thereby revealing various features and mechanisms of social animals, is a powerful tool in ethological research. Because honeybee colonies are populated by thousands of bees, individuals co-exist in high physical densities and are difficult to track unless specifically tagged, which can affect behavior. In addition, honeybees react to light and recordings must be made under special red-light conditions, which the eyes of bees perceive as darkness. The resulting video images are scarcely distinguishable. We have developed a new algorithm, K-Track, for tracking numerous bees in a flat laboratory arena. Our program implements three main processes: (A) The object (bee's) region is detected by simple threshold processing on gray scale images, (B) Individuals are identified by size, shape and spatiotemporal positional changes, and (C) Centers of mass of identified individuals are connected through all movie frames to yield individual behavioral trajectories. The tracking performance of our software was evaluated on movies of mobile multi-artificial agents and of 16 bees walking around a circular arena. K-Track accurately traced the trajectories of both artificial agents and bees. In the latter case, K-track outperformed Ctrax, well-known software for tracking multiple animals. To investigate interaction events in detail, we manually identified five interaction categories; 'crossing', 'touching', 'passing', 'overlapping' and 'waiting', and examined the extent to which the models accurately identified these categories from bee's interactions. All 7 identified failures occurred near a wall at the outer edge of the arena. Finally, K-Track and Ctrax successfully tracked 77 and 60 of 84 recorded interactive events, respectively. K-Track identified multiple bees on a flat surface and tracked their speed changes and encounters with other bees, with good performance.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Animais , Feminino , Masculino
14.
Tree Physiol ; 34(5): 503-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24876294

RESUMO

Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.


Assuntos
Dióxido de Carbono/metabolismo , Dipterocarpaceae/fisiologia , Floresta Úmida , Árvores/fisiologia , Bornéu , Dipterocarpaceae/crescimento & desenvolvimento , Malásia , Transpiração Vegetal , Árvores/crescimento & desenvolvimento
15.
Behav Res Methods ; 41(3): 782-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19587192

RESUMO

The honeybee can control its hive environment to survive drastic changes in the field environment. To study the control of multiple environmental factors by honeybees, in this experiment, we developed a continual and simultaneous monitoring system for the temperature, moisture, and carbon dioxide (CO2) concentration in a honeybee hive. Changes in hive weight, CO2 production rate, and honeybee behavior were also monitored to estimate energy costs and behavioral activity for the environmental regulation. Measurements were conducted in August 2008. We found that the honeybee hive has a microclimate different from the ambient climate, and that the difference was partly accompanied by changes in honeybee activity. Our results also suggest that hive temperature, humidity, and CO2 concentrations are controlled by different mechanisms. Additional monitoring of the hive environment and honeybee behavior for longer periods would enable us to understand the mechanisms of environmental control by honeybees, which is one of the behaviors that define honeybees as social insects.


Assuntos
Pesquisa Comportamental/métodos , Coleta de Dados/instrumentação , Coleta de Dados/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Animais , Abelhas , Dióxido de Carbono/análise , Meio Ambiente , Umidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa