Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Genome Res ; 34(1): 47-56, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38290979

RESUMO

Oxidative stress-induced DNA damage and its repair systems are related to cancer etiology; however, the molecular basis triggering tumorigenesis is not well understood. Here, we aimed to explore the causal relationship between oxidative stress, somatic mutations in pre-tumor-initiated normal tissues, and tumor incidence in the small intestines of MUTYH-proficient and MUTYH-deficient mice. MUTYH is a base excision repair enzyme associated with human colorectal cancer. Mice were administered different concentrations of potassium bromate (KBrO3; an oxidizing agent)-containing water for 4 wk for mutagenesis studies or 16 wk for tumorigenesis studies. All Mutyh -/- mice treated with >0.1% KBrO3 developed multiple tumors, and the average tumor number increased dose dependently. Somatic mutation analysis of Mutyh -/-/rpsL transgenic mice revealed that G:C  > T:A transversion was the only mutation type correlated positively with KBrO3 dose and tumor incidence. These mutations preferentially occurred at 5'G in GG and GAA sequences in rpsL This characteristic mutation pattern was also observed in the genomic region of Mutyh -/- tumors using whole-exome sequencing. It closely corresponded to signature 18 and SBS36, typically caused by 8-oxo-guanine (8-oxoG). 8-oxoG-induced mutations were sequence context dependent, yielding a biased amino acid change leading to missense and stop-gain mutations. These mutations frequently occurred in critical amino acid codons of known cancer drivers, Apc or Ctnnb1, known for activating Wnt signal pathway. Our results indicate that oxidative stress contributes to increased tumor incidence by elevating the likelihood of gaining driver mutations by increasing 8-oxoG-mediated mutagenesis, particularly under MUTYH-deficient conditions.


Assuntos
Guanina/análogos & derivados , Neoplasias , Estresse Oxidativo , Humanos , Camundongos , Animais , Estresse Oxidativo/genética , Mutagênese , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Mutação , Camundongos Transgênicos , Neoplasias/genética , Aminoácidos/genética , Reparo do DNA
2.
Genome Res ; 25(8): 1125-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26129709

RESUMO

The germline mutation rate is an important parameter that affects the amount of genetic variation and the rate of evolution. However, neither the rate of germline mutations in laboratory mice nor the biological significance of the mutation rate in mammalian populations is clear. Here we studied genome-wide mutation rates and the long-term effects of mutation accumulation on phenotype in more than 20 generations of wild-type C57BL/6 mice and mutator mice, which have high DNA replication error rates. We estimated the base-substitution mutation rate to be 5.4 × 10(-9) (95% confidence interval = 4.6 × 10(-9)-6.5 × 10(-9)) per nucleotide per generation in C57BL/6 laboratory mice, about half the rate reported in humans. The mutation rate in mutator mice was 17 times that in wild-type mice. Abnormal phenotypes were 4.1-fold more frequent in the mutator lines than in the wild-type lines. After several generations, the mutator mice reproduced at substantially lower rates than the controls, exhibiting low pregnancy rates, lower survival rates, and smaller litter sizes, and many of the breeding lines died out. These results provide fundamental information about mouse genetics and reveal the impact of germline mutation rates on phenotypes in a mammalian population.


Assuntos
Animais de Laboratório/genética , Mutação em Linhagem Germinativa , Camundongos/genética , Animais , Animais de Laboratório/fisiologia , Evolução Molecular , Feminino , Genoma , Tamanho da Ninhada de Vivíparos , Camundongos/classificação , Camundongos/fisiologia , Taxa de Mutação , Fenótipo , Gravidez , Taxa de Gravidez , Seleção Genética
3.
Sci Adv ; 10(11): eadk6308, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478617

RESUMO

Geometrical frustration endows magnets with degenerate ground states, resulting in exotic spin structures and quantum phenomena. Such magnets, called quantum magnets, can display non-coplanar spin textures and be a viable platform for the topological Hall effect driven by "emergent field." However, most quantum magnets are insulators, making it challenging to electrically detect associated fluctuations and excitations. Here, we probe magnetic transitions in the spin ice insulator Dy2Ti2O7, a prototypical quantum magnet, as emergent magnetotransport phenomena at the heterointerface with the nonmagnetic metal Bi2Rh2O7. Angle-dependent longitudinal resistivity exhibits peaks at the magnetic phase boundaries of spin ice due to domain boundary scattering. In addition, the anomalous Hall resistivity undergoes a sign change with the magnetic transition in Dy2Ti2O7, reflecting the inversion of the emergent field. These findings, on the basis of epitaxial techniques, connect the fundamental research on insulating quantum magnets to their potential electronic applications, possibly leading to transformative innovations in quantum technologies.

4.
EMBO J ; 27(2): 421-32, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18188152

RESUMO

Oxidative base lesions, such as 8-oxoguanine (8-oxoG), accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known which form of DNA is involved, whether nuclear or mitochondrial, nor is it known how the death order is executed. We established cells which selectively accumulate 8-oxoG in either type of DNA by expression of a nuclear or mitochondrial form of human 8-oxoG DNA glycosylase in OGG1-null mouse cells. The accumulation of 8-oxoG in nuclear DNA caused poly-ADP-ribose polymerase (PARP)-dependent nuclear translocation of apoptosis-inducing factor, whereas that in mitochondrial DNA caused mitochondrial dysfunction and Ca2+ release, thereby activating calpain. Both cell deaths were triggered by single-strand breaks (SSBs) that had accumulated in the respective DNAs, and were suppressed by knockdown of adenine DNA glycosylase encoded by MutY homolog, thus indicating that excision of adenine opposite 8-oxoG lead to the accumulation of SSBs in each type of DNA. SSBs in nuclear DNA activated PARP, whereas those in mitochondrial DNA caused their depletion, thereby initiating the two distinct pathways of cell death.


Assuntos
Núcleo Celular/genética , Dano ao DNA , DNA Mitocondrial/metabolismo , Transdução de Sinais , 8-Hidroxi-2'-Desoxiguanosina , Animais , Fator de Indução de Apoptose/metabolismo , Western Blotting , Cálcio/metabolismo , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Núcleo Celular/metabolismo , Ensaio Cometa , Quebras de DNA de Cadeia Simples , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Camundongos , Mutação , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Vitamina K 3/farmacologia
5.
Nucleic Acids Res ; 38(9): 2891-903, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20081199

RESUMO

Mammalian inosine triphosphatase encoded by ITPA gene hydrolyzes ITP and dITP to monophosphates, avoiding their deleterious effects. Itpa(-) mice exhibited perinatal lethality, and significantly higher levels of inosine in cellular RNA and deoxyinosine in nuclear DNA were detected in Itpa(-) embryos than in wild-type embryos. Therefore, we examined the effects of ITPA deficiency on mouse embryonic fibroblasts (MEFs). Itpa(-) primary MEFs lacking ITP-hydrolyzing activity exhibited a prolonged doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in nuclear DNA, compared with primary MEFs prepared from wild-type embryos. However, immortalized Itpa(-) MEFs had neither of these phenotypes and had a significantly higher ITP/IDP-hydrolyzing activity than Itpa(-) embryos or primary MEFs. Mammalian NUDT16 proteins exhibit strong dIDP/IDP-hydrolyzing activity and similarly low levels of Nudt16 mRNA and protein were detected in primary MEFs derived from both wild-type and Itpa(-) embryos. However, immortalized Itpa(-) MEFs expressed significantly higher levels of Nudt16 than the wild type. Moreover, introduction of silencing RNAs against Nudt16 into immortalized Itpa(-) MEFs reproduced ITPA-deficient phenotypes. We thus conclude that NUDT16 and ITPA play a dual protective role for eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals.


Assuntos
Hidrolases Anidrido Ácido/fisiologia , Instabilidade Cromossômica , Inosina Difosfato/metabolismo , Inosina Trifosfato/metabolismo , Pirofosfatases/fisiologia , Hidrolases Anidrido Ácido/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Nucleotídeos de Inosina/metabolismo , Inosina Trifosfato/análogos & derivados , Camundongos , Camundongos Knockout , Fenótipo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Inosina Trifosfatase
6.
Cell Death Discov ; 8(1): 150, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365611

RESUMO

Oxidative stress plays a pivotal role in the differentiation and proliferation of cells and programmed cell death. However, studies on the role of oxidative stress in differentiation have mainly employed the detection of reactive oxygen species (ROS) during differentiation or generated by ROS inducers. Therefore, it is difficult to clarify the significance of endogenous ROS production in the differentiation of human cells. We developed a system to control the intracellular level of ROS in the initial stage of differentiation in human iPS cells. By introducing a specific substitution (I69E) into the SDHC protein, a component of the mitochondrial respiratory chain complex, the endogenous ROS level increased. This caused impaired endoderm differentiation of iPS cells, and this impairment was reversed by overproduction of mitochondrial-targeted catalase, an anti-oxidant enzyme. Expression of tumor-related FOXC1 transcription factor increased transiently as early as 4 h after ROS-overproduction in the initial stage of differentiation. Knockdown of FOXC1 markedly improved impaired endoderm differentiation, suggesting that endogenous ROS production in the early differentiation state suppresses endoderm differentiation via transient FOXC1 expression.

7.
Genes Environ ; 43(1): 27, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225823

RESUMO

BACKGROUND: Base pair mismatches in genomic DNA can result in mutagenesis, and consequently in tumorigenesis. To investigate how mismatch repair deficiency increases mutagenicity under oxidative stress, we examined the type and frequency of mutations arising in the mucosa of the small intestine of mice carrying a reporter gene encoding guanine phosphoribosyltransferase (gpt) and in which the Msh2 gene, which encodes a component of the mismatch repair system, was either intact (Msh2+/+::gpt/0; Msh2-bearing) or homozygously knockout (KO) (Msh2-/-::gpt/0; Msh2-KO). RESULTS: Gpt mutant frequency in the small intestine of Msh2-KO mice was about 10 times that in Msh2-bearing mice. Mutant frequency in the Msh2-KO mice was not further enhanced by administration of potassium bromate, an oxidative stress inducer, in the drinking water at a dose of 1.5 g/L for 28 days. Mutation analysis showed that the characteristic mutation in the small intestine of the Msh2-KO mice was G-to-A transition, irrespective of whether potassium bromate was administered. Furthermore, administration of potassium bromate induced mutations at specific sites in gpt in the Msh2-KO mice: G-to-A transition was frequently induced at two known sites of spontaneous mutation (nucleotides 110 and 115, CpG sites) and at nucleotides 92 and 113 (3'-side of 5'-GpG-3'), and these sites were confirmed to be mutation hotspots in potassium bromate-administered Msh2-KO mice. Administration of potassium bromate also induced characteristic mutations, mainly single-base deletion and insertion of an adenine residue, in sequences of three to five adenine nucleotides (A-runs) in Msh2-KO mice, and elevated the overall proportion of single-base deletions plus insertions in Msh2-KO mice. CONCLUSIONS: Our previous study revealed that administration of potassium bromate enhanced tumorigenesis in the small intestine of Msh2-KO mice and induced G-to-A transition in the Ctnnb1 gene. Based on our present and previous observations, we propose that oxidative stress under conditions of mismatch repair deficiency accelerates the induction of single-adenine deletions at specific sites in oncogenes, which enhances tumorigenesis in a synergistic manner with G-to-A transition in other oncogenes (e.g., Ctnnb1).

8.
Sci Adv ; 7(52): eabl5381, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936456

RESUMO

While anomalous Hall effect (AHE) has been extensively studied in the past, efforts for realizing large Hall response have been mainly limited within intrinsic mechanism. Lately, however, a theory of extrinsic mechanism has predicted that magnetic scattering by spin cluster can induce large AHE even above magnetic ordering temperature, particularly in magnetic semiconductors with low carrier density, strong exchange coupling, and finite spin chirality. Here, we find out a new magnetic semiconductor EuAs, where Eu2+ ions with large magnetic moments form distorted triangular lattice. In addition to colossal magnetoresistance, EuAs exhibits large AHE with an anomalous Hall angle of 0.13 at temperatures far above antiferromagnetic ordering. As also demonstrated by model calculations, observed AHE can be explained by the spin cluster scattering in a hopping regime. Our findings shed light on magnetic semiconductors hosting topological spin textures, developing a field targeting diluted carriers strongly coupled to noncoplanar spin structures.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32247553

RESUMO

Tumorigenesis induced by oxidative stress is thought to be initiated by mutagenesis, but via an indirect mechanism. The dose-response curves for agents that act by this route usually show a threshold, for unknown reasons. To gain insight into these phenomena, we have analyzed the dose response for mutagenesis induced by the oral administration of potassium bromate, a typical oxidative-stress-generating agent, to gpt delta mice. The agent was given orally for 90 d to either Nrf2+ or Nrf2-knockout (KO) mice and mutants induced in the small intestine were analyzed. In Nrf2+mice, the mutant frequency was significantly greater than in the vehicle controls at a dose of 0.6 g/L but not at 0.2 g/L, indicating that a practical threshold for mutagenesis lies between these doses. At 0.6 g/L, the frequencies of G-to-T transversions (landmark mutations for oxidative stress) and G-to-A transitions were significantly elevated. In Nrf2-KO mice, too, the total mutant frequency was increased only at 0.6 g/L. G-to-T transversions are likely to have driven tumorigenesis in the small intestine. A site-specific G-to-T transversion at guanine (nucleotide 406) in a 5'-TGAA-3' sequence in gpt, and our primer extension reaction showed that formation of the oxidative DNA base modification 8-oxo-deoxyguanosine (8-oxo-dG) at nucleotide 406 was significantly increased at doses of 0.6 and 2 g/L in the gpt delta mice. In the Apc oncogene, guanine residues in the same or similar sequences (TGAA or AGAA) are highly substituted by thymine (G-to-T transversions) in potassium bromate-induced tumors. We propose that formation of 8-oxo-dG in the T(A)GAA sequence is an initiating event in tumor formation in the small intestine in response to oxidative stress.


Assuntos
Bromatos/toxicidade , Mutagênese/genética , Estresse Oxidativo/genética , Pentosiltransferases/genética , 8-Hidroxi-2'-Desoxiguanosina/genética , Administração Oral , Animais , Bromatos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , DNA/efeitos dos fármacos , DNA/genética , Relação Dose-Resposta a Droga , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Camundongos , Camundongos Knockout , Mutagênese/efeitos dos fármacos , Mutação , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos
10.
DNA Repair (Amst) ; 7(3): 418-30, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18155646

RESUMO

Human MutT homolog (hMTH1) hydrolyzes oxidized purine nucleoside triphosphates to monophosphates, thereby avoiding incorporation of such oxidized purines into DNA or RNA. We examined whether hMTH1 prevents cellular dysfunction induced by sodium nitroprusside, a spontaneous NO donor. Exposure to sodium nitroprusside caused an 8-oxoguanine (8-oxoG) buildup in DNA of proliferating MTH1-null cells which underwent mitochondrial degeneration and subsequently died. Quiescent MTH1-null cells also died with 8-oxoG buildup but only when the buildup affected mitochondrial and not nuclear DNA. In both proliferative and quiescent conditions, the accumulation of 8-oxoG in DNA and cell death was effectively prevented by hMTH1. Knockdown of MUTYH in quiescent MTH1-null cells significantly prevented the cell death, suggesting that 8-oxoG incorporated into mitochondrial DNA is a main cause of this form of cell death. To verify this possibility, an artificially modified hMTH1, namely mTP-EGFP-hMTH1, which localizes exclusively in mitochondria, was expressed in MTH1-null cells. mTP-EGFP-hMTH1 selectively prevented buildup of 8-oxoG in mitochondrial but not nuclear DNA after exposure of proliferating cells to sodium nitroprusside, and also efficiently prevented cell death. We thus concluded that exposure of cells to sodium nitroprusside causes oxidation of mitochondrial deoxynucleotide pools, and that buildup of oxidized bases in mitochondrial DNA initiates cell death.


Assuntos
Morte Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Glicosilases/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia
11.
DNA Repair (Amst) ; 7(9): 1437-54, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18585982

RESUMO

A second class II AP endonuclease, APEX2, possesses strong 3'-5' exonuclease and 3'-phosphodiesterase activities but only very weak AP-endonuclease activity. APEX2 associates with proliferating cell nuclear antigen (PCNA), and the progression of S phase of the cell cycle is accompanied by its expression. APEX2-null mice exhibit severe dyslymphopoiesis in thymus as well as moderate dyshematopoiesis and growth retardation. Comparative gene expression profiling of wild-type and APEX2-null mice using an oligonucleotide microarray revealed that APEX2-null thymus has significantly altered gene expression profiles, reflecting its altered populations of thymocytes. Beyond these altered populations, APEX2-null thymus exhibits significant alterations in expression of genes involved in DNA replication, recombination and repair, including Apex1, Exo1 and Fen1 as well as master genes for the DNA damage response, such as E2f1, Chek1, and proapoptotic genes. We therefore examined the extent of DNA strand breakage, and found that both of single-strand breaks detected as comets and double-strand breaks detected as gammaH2AX foci were significantly higher in frequency in most APEX2-null thymocytes compared to wild-type thymocytes. This higher frequency of DNA breaks was accompanied by increased expression of PCNA and increased phosphorylation of p53 at Ser23 and to a lesser extent, at Ser18. The present study clearly demonstrates that APEX2-null lymphocytes have a higher frequency of DNA breaks, indicating that APEX2 may play an important role(s) during their generation and/or repair.


Assuntos
Dano ao DNA , Endonucleases/genética , Perfilação da Expressão Gênica , Sistema Linfático/fisiologia , Timo/ultraestrutura , Animais , Reparo do DNA , Replicação do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Masculino , Camundongos , Camundongos Knockout , Enzimas Multifuncionais , Análise de Sequência com Séries de Oligonucleotídeos
12.
Methods Mol Biol ; 554: 199-212, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513676

RESUMO

8-Oxoguanine (8-oxoG), an oxidized form of guanine, is one of the major mutagenic lesions generated under oxidative stress. Oxidative damage in mitochondrial DNA has been implicated as a causative factor for a wide variety of degenerative diseases as well as for cancer during aging. We established a quantitative method for in situ detection of 8-oxoG in mitochondrial DNA in a single-cell level using a monoclonal antibody. Specific detection of 8-oxoG in mitochondrial DNA was confirmed by pre-treatment of samples with DNase I or MutM, the latter excising 8-oxoG opposite C in DNA. We then analyzed 8-oxoG dynamics in mitochondrial DNA of the wild-type and 8-oxoG DNA glycosylase (OGG1)-deficient mouse cells after exposure to hydrogen peroxide. Intensities for the 8-oxoG immunoreactivity in mitochondrial DNA were increased immediately after the exposure to hydrogen peroxide in both types of cells. The increased intensities returned to basal levels within a few hours only in wild-type cells, but not in OGG1-deficient cells which exhibited the increased intensities even 24 h after the exposure. These results indicate that OGG1 is a major enzyme for excision repair of 8-oxoG in mitochondrial DNA in mouse cells, and that our method described here is appropriate to study 8-oxoG dynamics in mitochondrial DNA.


Assuntos
DNA Mitocondrial/química , Imunofluorescência/métodos , Guanina/análogos & derivados , Guanina/análise , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , DNA Glicosilases/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Guanina/química , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Células NIH 3T3 , Oxidantes/farmacologia , Oxirredução
13.
Methods Mol Biol ; 554: 251-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513679

RESUMO

Oxidative base lesions, such as 8-oxoguanine, accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known whether only oxidative lesion accumulated in mitochondrial DNA is involved in such cell death. By introducing human cDNA encoding a nuclear form of 8-oxoG DNA glycosylase (hOGG1-1a) into immortalized mouse embryo fibroblasts lacking Ogg1 gene, we established a cell line which selectively accumulates 8-oxoguanine in mitochondrial DNA under oxidative stress. Selective accumulation of 8-oxoguanine in mitochondrial DNA in this cell line causes degradation of mitochondrial DNA followed by ATP depletion, mitochondrial membrane permeability transition, and Ca(2+) efflux, which in turn activates calpains to execute cell death. Knockdown of MUTYH which excises adenine opposite 8-oxoG in DNA prevents degradation of mitochondrial DNA and activation of calpain, thus suppressing the cell death induced by menadione.


Assuntos
Núcleo Celular/genética , Dano ao DNA , DNA Glicosilases/fisiologia , Reparo do DNA , DNA Mitocondrial/genética , Trifosfato de Adenosina/metabolismo , Animais , Southern Blotting , Cálcio/metabolismo , Calpaína/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , DNA Mitocondrial/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo
14.
Genes Genet Syst ; 94(1): 13-22, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30381610

RESUMO

Germline mutations are the origin of genetic variation and are widely considered to be the driving force of genome evolution. The rates and spectra of de novo mutations (DNMs) directly affect evolutionary speed and direction and thereby establish species-specific genomic futures in the long term. This has resulted in a keen interest in understanding the origin of germline mutations in mammals. Accumulating evidence from next-generation sequencing and family-based analysis indicates that the frequency of human DNMs varies according to sex, age and local genomic context. Thus, it is likely that there are multiple causes and drivers of mutagenesis, including spontaneous DNA lesions, DNA repair status and DNA polymerase errors. In this review, recent studies of human and mouse germline DNMs are discussed, and the rates and spectra of spontaneous germline DNMs in the mouse mutator lines Pold1exo/exo and TOY-KO (Mth1-/-/Ogg1-/-/Mutyh-/- triple knockout) are summarized in the context of endogenous causes and mechanisms.


Assuntos
Mutação em Linhagem Germinativa , Mutagênese , Animais , Humanos , Camundongos , Acúmulo de Mutações , Taxa de Mutação
15.
Evol Lett ; 1(5): 232-244, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30283652

RESUMO

Wolbachia is a maternally inherited ubiquitous endosymbiotic bacterium of arthropods that displays a diverse repertoire of host reproductive manipulations. For the first time, we demonstrate that Wolbachia manipulates sex chromosome inheritance in a sexually reproducing insect. Eurema mandarina butterfly females on Tanegashima Island, Japan, are infected with the wFem Wolbachia strain and produce all-female offspring, while antibiotic treatment results in male offspring. Fluorescence in situ hybridization (FISH) revealed that wFem-positive and wFem-negative females have Z0 and WZ sex chromosome sets, respectively, demonstrating the predicted absence of the W chromosome in wFem-infected lineages. Genomic quantitative polymerase chain reaction (qPCR) analysis showed that wFem-positive females lay only Z0 eggs that carry a paternal Z, whereas females from lineages that are naturally wFem-negative lay both WZ and ZZ eggs. In contrast, antibiotic treatment of adult wFem females resulted in the production of Z0 and ZZ eggs, suggesting that this Wolbachia strain can disrupt the maternal inheritance of Z chromosomes. Moreover, most male offspring produced by antibiotic-treated wFem females had a ZZ karyotype, implying reduced survival of Z0 individuals in the absence of feminizing effects of Wolbachia. Antibiotic treatment of wFem-infected larvae induced male-specific splicing of the doublesex (dsx) gene transcript, causing an intersex phenotype. Thus, the absence of the female-determining W chromosome in Z0 individuals is functionally compensated by Wolbachia-mediated conversion of sex determination. We discuss how Wolbachia may manipulate the host chromosome inheritance and that Wolbachia may have acquired this coordinated dual mode of reproductive manipulation first by the evolution of female-determining function and then cytoplasmically induced disruption of sex chromosome inheritance.

17.
PLoS One ; 10(5): e0126710, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25962134

RESUMO

ΔFosB is a stable transcription factor which accumulates in the nucleus accumbens (NAc), a key part of the brain's reward circuitry, in response to chronic exposure to cocaine or other drugs of abuse. While ΔFosB is known to heterodimerize with a Jun family member to form an active transcription factor complex, there has not to date been an open-ended exploration of other possible binding partners for ΔFosB in the brain. Here, by use of yeast two-hybrid assays, we identify PSMC5-also known as SUG1, an ATPase-containing subunit of the 19S proteasomal complex-as a novel interacting protein with ΔFosB. We verify such interactions between endogenous ΔFosB and PSMC5 in the NAc and demonstrate that both proteins also form complexes with other chromatin regulatory proteins associated with gene activation. We go on to show that chronic cocaine increases nuclear, but not cytoplasmic, levels of PSMC5 in the NAc and that overexpression of PSMC5 in this brain region promotes the locomotor responses to cocaine. Together, these findings describe a novel mechanism that contributes to the actions of ΔFosB and, for the first time, implicates PSMC5 in cocaine-induced molecular and behavioral plasticity.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Núcleo Accumbens/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Cocaína/administração & dosagem , DNA Helicases/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Núcleo Accumbens/fisiopatologia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Fatores de Transcrição de p300-CBP/metabolismo
18.
Ann N Y Acad Sci ; 1011: 101-11, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15126288

RESUMO

In mammalian cells, more than one genome in a single cell has to be maintained throughout the entire life of the cell, namely, one in the nucleus and the other in the mitochondria. The genomes and their precursor nucleotides are highly exposed to reactive oxygen species, which are inevitably generated as a result of the respiratory function in mitochondria. To counteract such oxidative damage in nucleic acids, cells are equipped with several defense mechanisms. Modified nucleotides in the nucleotide pools are hydrolyzed, thus avoiding their incorporation into DNA or RNA. Damaged bases in DNA with relatively small chemical alterations are mainly repaired by the base excision repair (BER) system, which is initiated by the excision of damaged bases by specific DNA glycosylases. MTH1 protein hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP, 8-oxo-dATP, and 2-hydroxy (OH)-dATP to the monophosphates, and MTH1 are located in the cytoplasm, mitochondria, and nucleus. We observed an increased susceptibility to spontaneous carcinogenesis in Mth1-deficient mice and an alteration of MTH1 expression along with the accumulation of 8-oxo-dG in patients with various neurodegenerative diseases. Enzymes for the BER pathway, namely, 8-oxoG DNA glycosylase (OGG1), 2-OH-A/adenine DNA glycosylase (MUTYH), and AP endonuclease (APEX2) are also located both in the mitochondria and in the nuclei, and the expression of mitochondrial OGG1 is altered in patients with various neurodegenerative diseases. We also observed increased susceptibilities to spontaneous carcinogenesis in OGG1 and MUTYH-deficient mice. The increased occurrence of lung tumor in OGG1-deficient mice was completely abolished by the concomitant disruption of the Mth1 gene.


Assuntos
Dano ao DNA , Desoxiguanosina/análogos & derivados , Ácidos Nucleicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Linhagem Celular , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxiguanosina/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Predisposição Genética para Doença , Humanos , Camundongos , Enzimas Multifuncionais , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Oxirredução , Estresse Oxidativo
20.
Sci Rep ; 4: 4689, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24732879

RESUMO

Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.


Assuntos
DNA Glicosilases/genética , Mutação em Linhagem Germinativa/efeitos dos fármacos , Guanina/análogos & derivados , Monoéster Fosfórico Hidrolases/genética , Animais , Sequência de Bases , Linhagem da Célula , Reparo do DNA , Variação Genética , Guanina/farmacologia , Hidrocefalia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Taxa de Mutação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa