Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885899

RESUMO

Petrochemical products could be produced from circular feedstock, such as waste plastics. Most plants that utilize syngas in their production are today equipped with entrained flow gasifiers, as this type of gasifier generates the highest syngas quality. However, feeding of circular feedstocks to an entrained flow gasifier can be problematic. Therefore, in this work, a two-step process was studied, in which polypropylene was pre-treated by pyrolysis to produce a liquid intermediate that was easily fed to the gasifier. The products from both pyrolysis and gasification were thoroughly characterized. Moreover, the product yields from the individual steps, as well as from the entire process chain, are reported. It was estimated that the yields of CO and H2 from the two-step process were at least 0.95 and 0.06 kg per kg of polypropylene, respectively, assuming that the pyrolysis liquid and wax can be combined as feedstock to an entrained flow gasifier. On an energy basis, the energy content of CO and H2 in the produced syngas corresponded to approximately 40% of the energy content of the polypropylene raw material. This is, however, expected to be significantly improved on a larger scale where losses are proportionally smaller.

2.
Langmuir ; 36(33): 9675-9684, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32787123

RESUMO

Technical lignins are widely available as side streams from pulping and biorefining processes. The aromatic structure of such lignins could be exploited in coating formulations to provide antioxidant or UV-blocking functionalities to packaging films. In this study, six technical lignins sourced from different plant species by given isolation/modification methods were compared for their composition, molar mass, and functional groups. The lignins were then used to prepare thin spin-coated films from aqueous ammonia media. All the lignins formed ultrathin (<12 nm), smooth (roughness < 2 nm), and continuous films that fully covered the solid support. Most of the films contained nanometer-sized particles, while those from water-insoluble lignins also presented larger particulate features, which likely originated from macromolecular association during solvent evaporation. These latter films had water contact angles (WCAs) between 40 and 60°, corresponding to a surface energy of 42-48 mJ/m2 (determined by Zisman plots). For comparison, the water wettability measured on lignin pellets obtained by mechanical compression tracked closely with the WCA obtained from the respective thin films. Considering the widely diverse chemical, molecular, and structural properties of the tested lignins, comprehensively documented here by using a battery of techniques, the solubility in water was found to be the most important and generic parameter to characterize the thin films. This points to the possibility of developing lignin coatings with predictable wetting behavior.

3.
Energy Fuels ; 36(7): 3654-3664, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35422574

RESUMO

Alkali removal from forest residues, eucalyptus residues, and wheat straw was studied by water and dilute nitric acid leaching. Leaching parameters were optimized for each feedstock in laboratory-scale experiments. After the optimization of leaching on the laboratory scale, nitric acid-leached and untreated feedstocks were pyrolyzed in a bench-scale bubbling fluidized bed unit. In the case of eucalyptus residues and wheat straw, nitric acid leaching was found to increase the organic liquid yield compared to untreated feedstock. In addition, the sugar content of the fast pyrolysis bio-oils was increased, and the alkali content reduced. On the other hand, the pyrolysis experiments with acid-leached forest residues were unsuccessful due to the bed agglomeration. These problems are expected to be a result of the lack of catalytically active elements in biomass which enhance especially the cracking reactions of lignin. Finally, the results were demonstrated in the pilot-scale unit where nitric acid-leached oat straw was pyrolyzed with high organic liquid yield.

4.
Energy Fuels ; 36(11): 5797-5804, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35685649

RESUMO

Fast pyrolysis bio-oils (FPBOs) originating from forest residues contain extractive-derived substances, which may form a separate, sticky layer with char particles on the surface of these bio-oils. In this study, first, the removal of extractive-derived substances from the bio-oil top phase was studied by common solvents with different polarities. In this case, the results indicated that when aimed at the maximum yield of single-phase fuel oil and thus the maximum amount of extractives removed, the use of n-heptane or n-hexane seems to be of benefit for this purpose. For safety reasons, the use of n-heptane was recommended. Second, an analysis practice (extraction time and the way of mixing) was optimized. In order to reduce the extraction time and enhance the extraction yield, it was important to break the oil surface in extraction. Third, based on the characterization results of the n-heptane extract by gas chromatography and ultraviolet spectroscopy, the detected compounds were classified as fatty acids, resin acids, esterified fatty acids, terpenoids, and steroids, and their total content (27 wt %) was lower than that of lignin-derived compounds (70 wt %). The extraction of the FPBO top phase with n-heptane followed by this analysis practice was a useful way to estimate the content and composition of lipophilic extractives.

5.
Energy Fuels ; 36(19): 12021-12030, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36237198

RESUMO

Fast pyrolysis of giant reed Arundo (Arundo donax), fiber sorghum (Sorghum bicolor L.Moench), eucalyptus (Eucalyptus spp.), and sugarcane bagasse (Saccharum officinarum) was studied in bench-scale bubbling fluidized bed reactor. Product yields were determined, and detailed physicochemical characterization for produced fast pyrolysis bio-oils (FPBOs) was carried out. The highest organic liquid yield (dry basis) was observed with sugarcane bagasse (59-62 wt %), followed by eucalyptus (49-53 wt %), giant reed Arundo (39 wt %), and fiber sorghum (34-42 wt %). After the pyrolysis experiments, produced FPBOs were gasified in an oxygen-blown autothermal catalytic reforming system for the produced synthesis gas. The gasifier consists of a partial oxidation zone where the FPBO is gasified, and the raw syngas is then reformed over a fixed bed steam-reforming catalyst in the reforming zone. The gas production (∼1.7 Nm3/kg FPBO) and composition (H2 ∼ 50 vol %, CO 20-25 vol %, and CO2 25-30 vol %) were similar for all FPBOs tested. These results show that the combination of fast pyrolysis with subsequent gasification provides a technically feasible and feedstock flexible solution for the production of synthesis gas.

6.
Energy Fuels ; 35(22): 18583-18591, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34824490

RESUMO

Fast pyrolysis bio-oil (FPBO), a second-generation liquid bioenergy carrier, is currently entering the market. FPBO is produced from biomass through the fast pyrolysis process and contains a large number of constituents, of which a significant part is still unknown. Various analytical methods have been systematically developed and validated for FPBO in the past; however, reliable methods for characterization of acetaldehyde, formaldehyde, and furfural are still lacking. In this work, different analysis methods with (HS-GC/ECD, HPLC, UV/Vis) and without derivatization (GC/MSD, HPLC) for the characterization of these components were evaluated. Five FPBO samples were used, covering a range of biomass materials (pine wood, miscanthus, and bark), storage conditions (freezer and room temperature), and after treatments (none, filtration, and vacuum evaporation). There was no difference among the methods for the acetaldehyde analysis. A significant difference among the methods for the determination of formaldehyde and furfural was observed. Thus, more data on the accuracy of the methods are required. The precision of all methods was below 10% with the exception of the HPLC analysis of acetaldehyde with an RSD of 14%. The concentration of acetaldehyde in the FPBO produced from the three different biomasses and stored in a freezer after production ranged from 0.24 to 0.60 wt %. Storage at room temperature and vacuum evaporation both decreased significantly the acetaldehyde concentration. Furfural concentrations ranged from 0.11 to 0.36 wt % for the five samples. Storage and after treatment affected the furfural concentration but to a lesser extent than for acetaldehyde. Storage at room temperature decreased formaldehyde similarly to acetaldehyde; however, after vacuum-evaporation the concentration of formaldehyde did not change. Thus, the analysis results indicated that in FPBO the equilibrium of formaldehyde and methylene glycol is almost completely on the methylene glycol side, as in aqueous solutions. All three methods employed here actually measure the sum of free formaldehyde and methylene glycol (FAMG).

7.
Biotechnol Prog ; 34(1): 81-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960884

RESUMO

The objective of this study was to evaluate the ability of one versatile peroxidase and the biocatalytically generated complex Mn(III)-malonate to polymerize coniferyl alcohol (CA) to obtain dehydrogenation polymers (DHPs) and to characterize how closely the structures of the formed DHPs resemble native lignin. Hydrogen peroxide was used as oxidant and Mn2+ as mediator. Based on the yields of the polymerized product, it was concluded that the enzymatic reaction should be performed in aqueous solution without organic solvents at 4.5 ≤ pH ≤ 6.0 and with 0.75 ≤ H2 O2 :CA ratio ≤ 1. The results obtained from the Mn3+ -malonate-mediated polymerization showed that the yield was almost 100%. Reaction conditions had, however, effect on the structures of the formed DHPs, as detected by size exclusion chromatography and pyrolysis-GC/MS. It can be concluded that from the structural point of view, the optimal pH for DHP formation using the presently studied system was 3 or 4.5. Low H2 O2 /CA ratio was beneficial to avoid oxidative side reactions. However, the high frequency of ß-ß linkages in all cases points to dimer formation between monomeric CA rather than endwise polymerization. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:81-90, 2018.


Assuntos
Manganês/química , Fenóis/química , Solventes/química , Água/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Lignina/química , Estrutura Molecular , Oxirredução , Fenóis/síntese química , Polimerização , Polímeros/química
8.
Bioresour Technol ; 212: 236-244, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107340

RESUMO

The progress of the conversion, the yield, the structure and the morphology of the produced carbonaceous materials as a function of time were systematically studied with pyrolysis-GC/FID and FESEM microscope. The conversion of galactoglucomannan, bleached kraft pulp and TEMPO oxidized cellulose nanofibrils followed the reaction route of glucose being slower though with fibrous material, higher molar mass and viscosity. The conversion of kraft lignin was minor following completely different reaction route. Carbonaceous particles of different shape and size were produced with yields between 23% and 73% after 4h with being higher for lignin than carbohydrates. According to the results, potential pulp mill streams represent lignocellulosic resources for generation of carbonaceous materials.


Assuntos
Carbono/química , Lignina/química , Biomassa , Carboidratos , Microscopia Eletrônica de Varredura , Rios/química , Temperatura , Gerenciamento de Resíduos/métodos
9.
J Agric Food Chem ; 64(4): 812-20, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26751846

RESUMO

Lignin is part of dietary fiber, but its conversion in the gastrointestinal tract is not well understood. The aim of this work was to obtain structural information on brewer's spent grain (BSG) lignin and to understand the behavior of the polymeric part of lignin exposed to fecal microbiota. The original BSG and different lignin fractions were characterized by pyrolysis-GC/MS with and without methylation. Methylation pyrolysis proved that the ratio between guaiacyl and syringyl units was similar in all lignin samples, but the ratio between p-coumaric and ferulic acids varied by the isolation method. Combined pyrolysis results indicated higher acylation of γ-OH groups in syringyl than in guaiacyl lignin units. The polymeric lignin structure in the alkali-soluble fraction after enzymatic hydrolysis was slightly altered in the in vitro colon fermentation, whereas lignin in the insoluble residue after enzymatic treatments remained intact.


Assuntos
Grão Comestível/metabolismo , Microbioma Gastrointestinal , Lignina/metabolismo , Colo/metabolismo , Colo/microbiologia , Grão Comestível/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lignina/química
10.
Sci Rep ; 6: 32420, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27599741

RESUMO

Green chemistry, sustainability and eco-efficiency are guiding the development of the next generation of industrial chemical processes. The use of non-edible lignocellulosic biomass as a source of chemicals and fuels has recently raised interest due to the need for an alternative to fossil resources. Valorisation mainly focuses on cellulose, which has been used for various industrial scale applications for decades. However, creating an economically more viable value chain would require the exploitation of the other main components, hemicellulose and lignin. Here, we present a new low melting mixture composition based in boric acid and choline chloride, and demonstrate its efficiency in the fractionation of wood-based biomass for the production of non-condensed lignin, suitable for further use in the search for sustainable industrial applications, and for the selective conversion of hemicelluloses into valuable platform chemicals.


Assuntos
Biocombustíveis , Biomassa , Solventes/química , Madeira/química , Catálise , Congelamento , Hidrólise , Lignina/química
11.
J Agric Food Chem ; 60(39): 9910-7, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22963516

RESUMO

Brewer's spent grain (BSG), the major side stream of brewing, consists of the husks and the residual parts of malts after the mashing process. BSG was enzymatically fractionated by a two-step treatment with carbohydrate- and protein-degrading enzymes, which solubilized 66% of BSG. BSG contained 11% lipids, which were mostly triglycerides, but also a notable amount of free fatty acids was present. Lipids were mostly solubilized due to the alkaline pH applied in the protease treatment. The main fatty acids were linoleic, palmitic, and oleic acids. Several lignans were identified in BSG, syringaresinol and secoisolariciresinol being the most abundant, many associated with the cell wall matrix and released by the alkaline-protease treatment.


Assuntos
Grão Comestível/química , Enzimas/química , Resíduos Industriais/análise , Lignanas/química , Lipídeos/química , Ácidos Graxos/química , Fermentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa