Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Methods ; 203: 233-241, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915291

RESUMO

Analytical pipeline, which is used for various analysis application, of CellProfiler, an open-source software for cell imaging analysis, is very important. In the present study, to examine whether intracellular proteins can be discriminated using a combination of CellProfiler and ImageJ, we analyzed neuroblastoma and monocytic cell lines, and disease-specific induced pluripotent stem cell (iPSC)-derived neurons. This revealed that scattered puncta of Rab7 and transferrin in neuroblastoma lines were clearly detectable by created analytical pipelines in CellProfiler. We then constructed pipelines for measuring the distance from the center of the nucleus to allow investigation of the intracellular localization of Rab7 or transferrin. Using CellProfiler and ImageJ in combination, we confirmed that our pipelines were applicable both quantitatively and objectively to analysis of membrane trafficking of proteins such as Rab proteins and transferrin. In addition, when applied to quantitative measurement of phagocytosis, our pipelines clearly detected monocytic cell lines that had engulfed bioparticles. Finally, we developed new pipelines for analysis of disease phenotype using iPSCs from a patient with familial Parkinson's disease (PD), harboring the I2020T LRRK2 mutation (PARK8). These were able to successfully detect Rab5 puncta and Rab7 puncta in PARK8 patient iPSC-derived neurons. Interestingly, in long-term culture, we found that the numbers of Rab7 puncta in a single PARK8 patient iPSC-derived neurons were lower than that of control iPSC-derived neurons. On the other hands, at 14 days in vitro, the numbers of Rab5 puncta in PARK8 patient iPSC-derived neurons were lower than those of isogenic iPSC-derived neurons, but not Rab7 puncta. Furthermore, Rab5 puncta of PARK8 patient iPSC-derived neurons exhibited distinct localization pattern relative to isogenic iPSC-derived neurons. These present results suggest that this new analytical tool can be used as a supporting method for quantification of intracellular protein.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neuroblastoma , Linhagem Celular , Humanos , Neuroblastoma/metabolismo , Neurônios/metabolismo , Transferrinas/metabolismo
2.
Biol Pharm Bull ; 46(1): 123-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36596520

RESUMO

Mutations in leucine rich-repeat kinase 2 (LRRK2) cause autosomal-dominant, late-onset Parkinson's disease (PD). Accumulating evidence indicates that PD-associated LRRK2 mutations induce neuronal cell death by increasing cellular reactive oxygen species levels. However, the mechanism of increased oxidative stress associated with LRRK2 kinase activity remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that protects cells from oxidative stress by inducing the expression of antioxidant genes. In the present, it was found that decreased expression of Nrf2 and mRNA expression of its target genes in Lrrk2-transgenic mouse brain and LRRK2 overexpressing SH-SY5Y cells. Furthermore, knockdown of glycogen synthase kinase-3ß (GSK-3ß) recovered Nrf2 expression and mRNA expression of its target genes in LRRK2 overexpressing SH-SY5Y cells. We concluded that since Nrf2 is transcriptional factor for antioxidative responses, therefore, reduction of Nrf2 expression by LRRK2 may be part of a mechanism that LRRK2-induces vulnerability to oxidative stress in neuronal cells.


Assuntos
Fator 2 Relacionado a NF-E2 , Neuroblastoma , Camundongos , Animais , Humanos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neuroblastoma/metabolismo , Encéfalo/metabolismo , Antioxidantes/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
3.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164260

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of familial Parkinson's disease. Although the characteristics of LRRK2 have gradually been revealed, its true physiological functions remain unknown. LRRK2 is highly expressed in immune cells such as B2 cells and macrophages, suggesting that it plays important roles in the immune system. In the present study, we investigate the roles of LRRK2 in the immune functions of dendritic cells (DCs). Bone marrow-derived DCs from both C57BL/6 wild-type (WT) and LRRK2 knockout (KO) mice were induced by culture with granulocyte/macrophage-colony stimulating factor (GM/CSF) in vitro. We observed the differentiation of DCs, the phosphorylation of the transcriptional factors NF-κB, Erk1/2, and p-38 after lipopolysaccharide (LPS) stimulation and antigen-presenting ability by flow cytometry. We also analyzed the production of inflammatory cytokines by ELISA. During the observation period, there was no difference in DC differentiation between WT and LRRK2-KO mice. After LPS stimulation, phosphorylation of NF-κB was significantly increased in DCs from the KO mice. Large amounts of inflammatory cytokines were produced by DCs from KO mice after both stimulation with LPS and infection with Leishmania. CD4+ T-cells isolated from antigen-immunized mice proliferated to a significantly greater degree upon coculture with antigen-stimulated DCs from KO mice than upon coculture with DCs from WT mice. These results suggest that LRRK2 may play important roles in signal transduction and antigen presentation by DCs.


Assuntos
Células da Medula Óssea/citologia , Células Dendríticas/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lipopolissacarídeos/efeitos adversos , NF-kappa B/metabolismo , Animais , Apresentação de Antígeno , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos
4.
Hum Mol Genet ; 24(17): 4879-900, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26056228

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is the causative molecule of the autosomal dominant hereditary form of Parkinson's disease (PD), PARK8, which was originally defined in a study of a Japanese family (the Sagamihara family) harboring the I2020T mutation in the kinase domain. Although a number of reported studies have focused on cell death mediated by mutant LRRK2, details of the pathogenetic effect of LRRK2 still remain to be elucidated. In the present study, to elucidate the mechanism of neurodegeneration in PD caused by LRRK2, we generated induced pluripotent stem cells (iPSC) derived from fibroblasts of PD patients with I2020T LRRK2 in the Sagamihara family. We found that I2020T mutant LRRK2 iPSC-derived neurons released less dopamine than control-iPSC-derived neurons. Furthermore, we demonstrated that patient iPSC-derived neurons had a lower phospho-AKT level than control-iPSC-derived neurons, and that the former showed an increased incidence of apoptosis relative to the controls. Interestingly, patient iPSC-derived neurons exhibited activation of glycogen synthase kinase-3ß (GSK-3ß) and high Tau phosphorylation. In addition, the postmortem brain of the patient from whom the iPSC had been established exhibited deposition of neurofibrillary tangles as well as increased Tau phosphorylation in neurons. These results suggest that I2020T LRRK2-iPSC could be a promising new tool for reproducing the pathology of PD in the brain caused by the I2020T mutation, and applicable as a model in studies of targeted therapeutics.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas tau/metabolismo , Animais , Apoptose/genética , Autofagia , Caspase 3/metabolismo , Linhagem Celular , Dopamina/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Neurônios/citologia , Estresse Oxidativo , Fosforilação
5.
Biochem Biophys Res Commun ; 430(2): 560-6, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23220480

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is the molecule responsible for autosomal-dominant Parkinson's disease (PD), PARK8, but the etiologic effects of its mutation remain unknown. In the present study, we investigated a novel mechanism for the neurodegeneration induced by I2020T mutant LRRK2. Using native gel electrophoresis and immunoprecipitation, we found that wild-type (WT) LRRK2 formed a heterodimer with I2020T LRRK2 in transfected cells, and that the heterodimer exhibited a markedly lower intracellular protein level than the WT/WT-homodimer. An increased amount of I2020T LRRK2 decreased the protein level of co-transfected WT LRRK2. A pulse-chase experiment revealed that the intracellular protein lifetime of WT LRRK2 was shortened by co-transfection with I2020T LRRK2. These results suggest that I2020T LRRK2 enhances the intracellular degradation of WT LRRK2 through WT/I2020T-heterodimer formation. Overexpression of WT LRRK2 in HEK293 cells increased the phosphorylation level of Akt1 (S473), a possible physiological substrate of LRRK2, and made cells resistant to hydrogen peroxide-induced apoptosis. However, both Akt1 phosphorylation and apoptosis resistance were reduced in WT/I2020T-expressing cells in comparison with WT/WT-expressing cells. Reduction of Akt1 phosphorylation and apoptosis resistance were also evident when a neuroblastoma SH-SY5Y clone overexpressing WT LRRK2 was transfected with the I2020T LRRK2. Altogether, these results suggest that the I2020T mutation enhances the intracellular degradation of LRRK2 through WT/I2020T-heterodimer formation, leading to reduced Akt1 phosphorylation and diminished protectivity against apoptosis. Our findings suggest the possibility of a dominant-negative mechanism of neurodegeneration in PD caused by I2020T LRRK2 mutation.


Assuntos
Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Células HEK293 , Humanos , Imunoprecipitação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação , Doença de Parkinson/genética , Fosforilação , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt
6.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678502

RESUMO

Synovial inflammation plays a central role in joint destruction and pain in osteoarthritis (OA). The NF-κB pathway plays an important role in the inflammatory process and is activated in OA. A previous study reported that a jietacin derivative (JD), (Z)-2-(8-oxodec-9-yn-1-yl)-1-vinyldiazene 1-oxide, suppressed the nuclear translocation of NF-κB in a range of cancer cell lines. However, the effect of JD in synovial cells and the exact mechanism of JD as an NF-κB inhibitor remain to be determined. We investigated the effect of JD on TNF-α-induced inflammatory reaction in a synovial cell line, SW982 and human primary synovial fibroblasts (hPSFs). Additionally, we examined phosphorylated levels of p65 and p38 and expression of importin α3 and ß1 using Western blotting. RNA-Seq analysis revealed that JD suppressed TNF-α-induced differential expression: among 204 genes significantly differentially expressed between vehicle and TNF-α-stimulated SW982 (183 upregulated and 21 downregulated) (FC ≥ 2, Q < 0.05), expression of 130 upregulated genes, including inflammatory cytokines (IL1A, IL1B, IL6, IL8) and chemokines (CCL2, CCL3, CCL5, CCL20, CXCL9, 10, 11), was decreased by JD treatment and that of 14 downregulated genes was increased. KEGG pathway analysis showed that DEGs were increased in the cytokine−cytokine receptor interaction, TNF signaling pathway, NF-κB signaling pathway, and rheumatoid arthritis. JD inhibited IL1B, IL6 and IL8 mRNA expression and IL-6 and IL-8 protein production in both SW982 and hPSFs. JD also suppressed p65 phosphorylation in both SW982 and hPSFs. In contrast, JD did not alter p38 phosphorylation. JD may inhibit TNF-α-mediated inflammatory cytokine production via suppression of p65 phosphorylation in both SW982 and hPSFs. Our results suggest that JD may have therapeutic potential for OA due to its anti-inflammatory action through selective suppression of the NF-κB pathway on synovial cells.

7.
Biochem Biophys Res Commun ; 391(1): 242-7, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19912990

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is the causal gene for autosomal dominant familial Parkinson's disease. We have previously reported a novel molecular feature characteristic to I2020T mutant LRRK2: higher susceptibility to post-translational degradation than the wild-type LRRK2. In the present study, we demonstrated that the protective effect of I2020T LRRK2 against hydrogen peroxide-induced apoptosis was impaired in comparison with the wild-type molecule. When the intracellular level of the protein had been allowed to recover by treatment with proteolysis inhibitors, the protective effect of I2020T LRRK2 against apoptosis was increased. We further confirmed that a decrease in the intracellular protein level of WT LRRK2 by knocking down resulted in a reduction of protectivity against apoptosis. These results suggest that higher susceptibility of I2020T mutant LRRK2 to intracellular degradation than the wild-type molecule may be one of the mechanisms involved in the neurodegeneration associated with this LRRK2 mutation.


Assuntos
Apoptose , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Cloroquina/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Leupeptinas/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Proteínas Serina-Treonina Quinases/genética
8.
Biochem Biophys Res Commun ; 392(3): 431-5, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20079710

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of familial Parkinson's disease (PD), but its true physiological function remains unknown. In the normal mouse, LRRK2 is expressed in kidney, spleen, and lung at much higher levels than in brain, suggesting that LRRK2 may play an important role in these organs. Analysis of age-related changes in LRRK2 expression demonstrated that expression in kidney, lung, and various brain regions was constant throughout adult life. On the other hand, expression of both LRRK2 mRNA and protein decreased markedly in spleen in an age-dependent manner. Analysis of purified spleen cells indicated that B lymphocytes were the major population expressing LRRK2, and that T lymphocytes showed no expression. Consistently, the B lymphocyte surface marker CD19 exhibited an age-dependent decrease of mRNA expression in spleen. These results suggest a possibly novel function of LRRK2 in the immune system, especially in B lymphocytes.


Assuntos
Linfócitos B/enzimologia , Proteínas Serina-Treonina Quinases/biossíntese , Baço/enzimologia , Fatores Etários , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Baço/citologia
9.
Stem Cell Res ; 49: 102073, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33181472

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is the causal gene of the autosomal dominant hereditary form of Parkinson's disease (PD), PARK8. We have previously reported that induced pluripotent stem cells (iPSCs) from a PARK8 patient with I2020T LRRK2 mutation replicated to some extent the pathologic phenotype evident in the brain of PD patients. In the present study, we generated gene-corrected iPSCs line, KEIUi001-A, using TALEN-mediated genome editing. KEIUi001-A retained a normal karyotype and pluripotency, i.e. the capacity to differentiate into cell types of the three germ layers. This iPSCs will be valuable for clarifying various aspects of LRRK2-related pathology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética , Fenótipo
10.
Biochem Biophys Res Commun ; 390(3): 710-5, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19833102

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been identified as the causal gene for autosomal dominant familial Parkinson's disease (PD), although the mechanism of neurodegeneration involving the mutant LRRK2 molecules remains unknown. In the present study, we found that the protein level of transfected I(2020)T mutant LRRK2 was significantly lower than that of wild-type and G(2019)S mutant LRRK2, although the intracellular localization of the I(2020)T and wild-type molecules did not differ. Pulse-chase experiments proved that the I(2020)T LRRK2 molecule has a higher degradation rate than wild-type or G(2019)S LRRK2. Upon addition of proteasome and lysosome inhibitors, the protein level of I(2020)T mutant LRRK2 reached that of the wild-type. These results indicate that I(2020)T mutant LRRK2 is more susceptible to post-translational degradation than the wild-type molecule. Our results indicate a novel molecular feature characteristic to I(2020)T LRRK2, and provide a new insight into the mechanism of neurodegeneration caused by LRRK2.


Assuntos
Doença de Parkinson/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Humanos , Isoleucina/genética , Isoleucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Treonina/genética , Treonina/metabolismo , Transfecção
12.
Arch Oral Biol ; 97: 150-155, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30390464

RESUMO

OBJECTIVE: To investigate whether maternal chewing during prenatal stress alters the responsivity of young offspring to novel stress, we examined the expression of hippocampal glucocorticoid receptors and mineralocorticoid receptors, and the levels of hypothalamic corticotropin-releasing hormone in young adult mouse offspring of dams exposed to restraint stress during pregnancy. DESIGN: To induce stress, the dams were placed in a ventilated restraint tube for 45 min each day from day 12 of pregnancy through parturition. While restrained in the tube, one group of dams was provided a wooden stick for chewing. Hippocampal expression of glucocorticoid receptor and mineralocorticoid receptor messenger ribonucleic acid was assessed in 1-month-old pups. Hypothalamic expression of corticotropin-releasing hormone messenger ribonucleic acid was examined before and after exposing the offspring to a novel stressor. RESULTS: Prenatal stress significantly decreased hippocampal expression of both glucocorticoid receptor and mineralocorticoid receptor messenger ribonucleic acid in the offspring, and increased the expression of corticotropin-releasing hormone messenger ribonucleic acid in the hypothalamic paraventricular nucleus in the offspring after novel stress exposure. Maternal chewing during exposure to prenatal stress attenuated the decreased hippocampal expression of both glucocorticoid receptor and mineralocorticoid receptor messenger ribonucleic acid, and the increased corticotropin-releasing hormone messenger ribonucleic acid expression in the hypothalamic paraventricular nucleus in the offspring. CONCLUSIONS: Downregulation of hippocampal glucocorticoid receptor and mineralocorticoid receptor expression in offspring due to prenatal stress, which may be associated with increased susceptibility to novel stress in adulthood, are attenuated by allowing the dams to chew on a wooden stick.


Assuntos
Adaptação Psicológica , Hipocampo/metabolismo , Mastigação , Complicações na Gravidez/prevenção & controle , Complicações na Gravidez/psicologia , Estresse Psicológico/prevenção & controle , Estresse Psicológico/psicologia , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Hibridização In Situ , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo
14.
Neurosci Lett ; 417(1): 21-3, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17395370

RESUMO

To understand the genetic origin of I2020T mutation in the kinase domain of leucine rich repeat kinase 2 (LRRK2), we investigated the original PARK8 Japanese family (Sagamihara family) and a German family (family 32), both of which were found to harbor I2020T as the causal mutation for autosomal dominant familial Parkinson's disease (PD). Microsatellite-haplotype analysis around the LRRK2 gene indicated that the mutation-carrying haplotypes of the two families were distinct from each other. This indicated that the I2020T mutation, an essential pathogenic mutation of PARK8-related PD, had occurred independently in the two PD families.


Assuntos
Predisposição Genética para Doença/genética , Mutação/genética , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Povo Asiático/genética , Transtornos Cromossômicos/genética , Análise Mutacional de DNA , Feminino , Genes Dominantes/genética , Testes Genéticos , Genótipo , Alemanha/etnologia , Haplótipos/genética , Humanos , Japão/etnologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Doença de Parkinson/etnologia , Linhagem , Proteínas Serina-Treonina Quinases/química , População Branca/genética
15.
Stem Cell Res ; 24: 36-39, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29034893

RESUMO

Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 20-year-old dystonia patient with a GCH1 mutation (DYT5). Episomal vectors were used to introduce reprogramming factors (OCT3/4, SOX2, KLF4, L-MYC, LIN28, and p53 carboxy-terminal dominant-negative fragment) to the PBMCs. The generated iPSCs expressed pluripotency markers, and were capable of differentiating into derivates of all three germ layers in vitro. The iPSC line also showed a normal karyotype and preserved the GCH1 mutation. This cellular model can provide opportunities to perform pathophysiological studies for aberrant dopamine metabolism-related disorders.


Assuntos
Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Adulto , Diferenciação Celular , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Mutação , Fatores de Transcrição/genética , Adulto Jovem
16.
Arch Neurol ; 63(11): 1605-10, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17101830

RESUMO

OBJECTIVES: To better understand the relationship between mutation of the guanosine triphosphate cyclohydrolase I (GCH1) gene and the etiology of DYT5 dystonia and to accumulate data on the mutation in the Japanese population for genetic diagnosis of the disease. SETTING: Japanese population. Patients Eight Japanese patients with suspected DYT5 dystonia were analyzed. Intervention Direct genomic sequencing of 6 exons of GCH1 was performed. MAIN OUTCOME MEASURES: For patients who did not exhibit any abnormality in the sequence analysis, the possibility of exon deletions was examined. In cases for which cerebrospinal fluid was available, the concentrations of neopterin and biopterin were measured as an index of GCH1 enzyme activity. RESULTS: In 2 patients, we found a new T106I mutation in exon 1 of GCH1, a position involved in the helix-turn-helix structure of the enzyme. In the third patient, we found a new mutation (a 15-base pair nucleotide deletion) in exon 5 that may cause a frameshift involving the active site. In the fourth patient, we detected a known nucleotide G>A substitution in the splice site of intron 5, which has been reported to produce exon 5-skipped messenger RNA. The concentrations of both neopterin and biopterin in the cerebrospinal fluid of the third and fourth patients were markedly lower than the normal range, indicating that the GCH1 enzyme was functionally abnormal in these mutations. Gene dosage analysis showed that the fifth patient had a deletion of both exon 3 and exon 4, whereas the sixth patient had a deletion of exon 3. CONCLUSIONS: We found several novel, as well as known, GCH1 mutations in Japanese patients with DYT5 dystonia. In some of them, the GCH1 enzyme activity was proved to be impaired.


Assuntos
Distúrbios Distônicos/genética , GTP Cicloidrolase/genética , Mutação , Adolescente , Adulto , Animais , Biopterinas/líquido cefalorraquidiano , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Distúrbios Distônicos/líquido cefalorraquidiano , Distúrbios Distônicos/metabolismo , Éxons , Feminino , Humanos , Isoleucina/genética , Japão , Masculino , Repetições de Microssatélites , Neopterina/líquido cefalorraquidiano , Treonina/genética
17.
J Neuroimmunol ; 292: 1-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26943952

RESUMO

LRRK2 is the causal molecule of autosomal dominant familial Parkinson's disease. B2 cells express a much higher LRRK2 mRNA level than B1 cells. To reveal the function of LRRK2 in B cells, we analyzed B cell functions in LRRK2-knockout (LRRK2(-/-)) mice. LRRK2(-/-) mice had significantly higher counts of peritoneal B1 cells than wild-type mice. After BCR stimulation, phosphor-Erk1/2 of splenic B2 cells was enhanced to a higher degree in LRRK2(-/-) mice. LRRK2(-/-) mice had a significantly higher serum IgA level, and TNP-Ficoll immunization increased the titer of serum anti-TNP IgM antibody. LRRK2 may play important roles in B cells.


Assuntos
Linfócitos B/metabolismo , Homeostase/genética , Imunoglobulina A/sangue , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Fatores Etários , Animais , Antígenos CD/metabolismo , Linfócitos B/classificação , Ensaio de Imunoadsorção Enzimática , Ficoll/análogos & derivados , Ficoll/imunologia , Citometria de Fluxo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cavidade Peritoneal/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Baço/citologia , Fator de Crescimento Transformador beta1/sangue , Trinitrobenzenos/imunologia
18.
FEBS J ; 281(1): 3-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24165324

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been identified as the causal molecule for autosomal-dominant Parkinson's disease (PD). Experimental evidence indicates that LRRK2 may play an important role in the pathology induced by abnormal phosphorylation of tau. In the present study, we demonstrated that LRRK2 directly associates with GSK-3ß, and that this interaction enhances the kinase activity of GSK-3ß. Furthermore, we found that LRRK2-mediated activation of GSK-3ß induces high phosphorylation of tau at Ser396 in SH-SY5Y cells. From our present findings, we conclude that LRRK2 may function as a novel enhancer for GSK-3ß and as a physiological regulator of neurite outgrowth and axonal transport through regulation of the GSK-3ß-mediated phosphorylation of tau at the cellular level. Since LRRK2 is detected in tau-positive inclusions in brain tissue affected by various neurodegenerative disorders, including PD, LRRK2-stimulated phosphorylation of tau by GSK-3ß may be involved in development of pathological features in the initial stage of PD.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Neuroblastoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas tau/metabolismo , Western Blotting , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Imunoprecipitação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Neuroblastoma/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Células Tumorais Cultivadas
19.
Mol Neurodegener ; 7: 15, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22534020

RESUMO

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) is the gene responsible for autosomal-dominant Parkinson's disease (PD), PARK8, but the mechanism by which LRRK2 mutations cause neuronal dysfunction remains unknown. In the present study, we investigated for the first time a transgenic (TG) mouse strain expressing human LRRK2 with an I2020T mutation in the kinase domain, which had been detected in the patients of the original PARK8 family. RESULTS: The TG mouse expressed I2020T LRRK2 in dopaminergic (DA) neurons of the substantia nigra, ventral tegmental area, and olfactory bulb. In both the beam test and rotarod test, the TG mice exhibited impaired locomotive ability in comparison with their non-transgenic (NTG) littermates. Although there was no obvious loss of DA neurons in either the substantia nigra or striatum, the TG brain showed several neurological abnormalities such as a reduced striatal dopamine content, fragmentation of the Golgi apparatus in DA neurons, and an increased degree of microtubule polymerization. Furthermore, the tyrosine hydroxylase-positive primary neurons derived from the TG mouse showed an increased frequency of apoptosis and had neurites with fewer branches and decreased outgrowth in comparison with those derived from the NTG controls. CONCLUSIONS: The I2020T LRRK2 TG mouse exhibited impaired locomotive ability accompanied by several dopaminergic neuron abnormalities. The TG mouse should provide valuable clues to the etiology of PD caused by the LRRK2 mutation.


Assuntos
Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Comportamento Animal , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Locomoção/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Doença de Parkinson/fisiopatologia
20.
PLoS One ; 7(1): e30834, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22303461

RESUMO

Leucine-rich repeat kinase 2 (LRRK2), a large protein kinase containing multi-functional domains, has been identified as the causal molecule for autosomal-dominant Parkinson's disease (PD). In the present study, we demonstrated for the first time that (i) LRRK2 interacts with tau in a tubulin-dependent manner; (ii) LRRK2 directly phosphorylates tubulin-associated tau, but not free tau; (iii) LRRK2 phosphorylates tau at Thr181 as one of the target sites; and (iv) The PD-associated LRRK2 mutations, G2019S and I2020T, elevated the degree of tau-phosphorylation. These results provide direct proof that tau is a physiological substrate for LRRK2. Furthermore, we revealed that LRRK2-mediated phosphorylation of tau reduces its tubulin-binding ability. Our results suggest that LRRK2 plays an important role as a physiological regulator for phosphorylation-mediated dissociation of tau from microtubules, which is an integral aspect of microtubule dynamics essential for neurite outgrowth and axonal transport.


Assuntos
Neuritos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Modelos Biológicos , Fosforilação , Ligação Proteica , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa