Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(21): 7353-7360, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37196166

RESUMO

N-9-Fluorenylmethyloxycarbonyl (Fmoc)- and C-tertiary butyl (t-Bu)-protected glutamate (L-2), bearing a phenanthroline moiety at the side residue, forms 1D supramolecular assemblies via H-bonding as well as undergoing π-stacking interactions to afford crystals or gels that depend on the shape-complementarity of coexisting alcohols, as demonstrated by structural analyses on these assemblies by means of single-crystal X-ray diffractometry and supplemented with small- and wide-angle X-ray scattering data. Moreover, the rheological measurements on the gels help to define a model for when gels and crystals are expected and found. These observations and conclusions highlight an important, but not very appreciated, aspect of solute-solvent interactions within supramolecular assemblies that can allow the constituent-aggregating molecules in some systems to exhibit high selectivity toward the structures of their solvents. The consequences of this selectivity, as demonstrated here by single-crystal and powder X-ray diffraction data, can lead to self-assembled structures which alter completely the bulk phase properties and morphology of the materials. In that regard, rheological measurements have helped to develop a model to explain when gels and phase-separated mixtures of crystals and solvents are expected.

2.
J Am Chem Soc ; 144(37): 16726-16731, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36095292

RESUMO

We demonstrated the synthesis of a conductive two-dimensional metal-organic framework (MOF) thin film by single-step all-vapor-phase chemical vapor deposition (CVD). The synthesized large-area thin film of Cu3(C6O6)2 has an edge-on-orientation with high crystallinity. Cu3(C6O6)2 thin film-based microdevices were fabricated by e-beam lithography and had an electrical conductivity of 92.95 S/cm. Synthesis of conductive MOF thin films by the all-vapor-phase CVD will enable fundamental studies of physical properties and may help to accomplish practical applications of conductive MOFs.

3.
Inorg Chem ; 61(35): 14067-14074, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36006962

RESUMO

In condensed matter, phase separation is strongly related to ferroelasticity, ferroelectricity, ferromagnetism, electron correlation, and crystallography. These ferroics are important for nano-electronic devices such as non-volatile memory. However, the quantitative information regarding the lattice (atomic) structure at the border of phase separation is unclear in many cases. Thus, to design electronic devices at the molecular level, a quantitative electron-lattice relationship must be established. Herein, we elucidated a PdII-PdIV/PdIII-PdIII phase transition and phase separation mechanism for [Pd(cptn)2Br]Br2 (cptn = 1R,2R-diaminocyclopentane), propagated through a hydrogen-bonding network. Although the Pd···Pd distance was used to determine the electronic state, the differences in the Pd···Pd distance and the optical gap between Mott-Hubbard (MH) and charge-density-wave (CDW) states were only 0.012 Å and 0.17 eV, respectively. The N-H···Br···H-N hydrogen-bonding network functioned as a jack, adjusting the structural difference dynamically, and allowing visible ferroelastic phase transition/separation in a fluctuating N2 gas flow. Additionally, the effect of the phase separation on the spin susceptibility and electrical conductivity were clarified to represent the quasi-epitaxial crystals among CDW-MH states. These results indicate that the phase transitions and separations could be controlled via atomic and molecular level modifications, such as the addition of hydrogen bonding.

4.
Chemistry ; 27(72): 18135-18140, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34741369

RESUMO

Layer flexibility in two-dimensional coordination polymers (2D-CPs) contributes to several functional materials as it results in anisotropic structural response to external stimuli. Chemical modification is a common technique for modifying layer structures. This study demonstrates that crystal morphology of a cyanide-bridged 2D-CP of type [Mn(salen)]2 [ReN(CN)4 ] (1) consisting of flexible undulating layers significantly impacts the layer configuration and assembly. Nanoplates of 1 showed an in-plane contraction of layers with a longer interlayer distance compared to the micrometer-sized rod-type particles. These effects by crystal morphology on the structure of the 2D-CP impacted the structural flexibility, resulting in dual-functional changes: the enhancement of the sensitivity of structural transformation to water adsorption and modification of anisotropic thermal expansion of 1. Moreover, the nanoplates incorporated new adsorption sites within the layers, resulting in the uptake of an additional water molecule compared to the micrometer-sized rods.

5.
Inorg Chem ; 60(17): 13727-13735, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34407609

RESUMO

We created dual interactive sites in a porous coordination network using a CuI cluster and a rotation-restricted ligand, tetra(3-pyridyl)phenylmethane (3-TPPM). The dual interactive sites of iodide and Cu ions can adsorb I2 via four-step processes including two chemisorption processes. Initially, one I2 molecule was physisorbed in a pore and successively chemisorbed on iodide sites of the pore surface, and then the next I2 molecule was physisorbed and chemisorbed on Cu ions to form a cross-linked network. We revealed the four-step I2 diffusion process by single-crystal X-ray structure determination and spectroscopic kinetic analysis.

6.
Inorg Chem ; 60(13): 9273-9277, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34128658

RESUMO

We prepared coordination networks that show relatively strong emission with through-space charge-transfer (TSCT) transitions. Thermolysis of a kinetically assembled network with Cu2Br2 dimer connectors, which was assembled from a CuBr cluster and the Td ligand 4-4-tetrapyridyltetraphenylmethane (4-TPPM), generated a highly luminescent network composed of Cu+ connectors and 4-TPPM linkers with CuBr2- guests. We clarified that the electronic transitions in this network include TSCT in addition to the typical metal-ligand charge transfer (MLCT) observed in conventional Cu complexes.

7.
Inorg Chem ; 60(23): 17858-17864, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797060

RESUMO

A tridentate 3-pyridyl-based ligand containing a hexaazaphenalene skeleton (3-TPHAP-) with topologically isolated p orbitals was prepared by a one-pot reaction. It was successfully reacted with a Co2+ salt and a 1,4-benzenedicarboxylic acid co-ligand to give a porous coordination network. In the structure, the hexaazaphenalene skeleton interacts with water to form an internal hydrogen bonding network, allowing the entire pore space to be revealed by single-crystal X-ray diffraction (SXRD). The network structure consists of dimeric Co clusters featuring labile sites occupied by solvent molecules. Several guest molecules, namely, anthracene, triphenylene, and iodine, were incorporated inside the network. The resultant encapsulated structures were elucidated by SXRD, revealing unusual host-guest interactions with a subtle structural modulation.

8.
Angew Chem Int Ed Engl ; 59(9): 3416-3422, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31880381

RESUMO

Rational engineering and assimilation of diverse chemo- and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal-organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo- and biocatalytic components. This was shown by one-pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]-catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.

9.
Chemistry ; 25(66): 15182-15188, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31433087

RESUMO

An anionic π molecule can form an aggregate when a multi-interactivity is introduced, in sharp contrast to common anionic molecules that are generally difficult to stack on each other. We found that a multi-interactive ligand, 2,5,8-tri(4'-pyridyl)-1,3,4,6,7,9-hexaazaphenalenate (TPHAP- ) exhibited a large Stokes shift and an intramolecular charge transfer, both of which were sensitive to hydrogen-bonding media. An anionic potassium salt of TPHAP- in methanol formed various aggregation states depending on the concentration examined; this was revealed by steady-state spectroscopic and fluorescence lifetime measurements. Self-assembling cadmium ions and the ligands can create several morphological crystals that are controlled by the ligand concentration, among which three new structures were determined by single-crystal analysis. The X-ray structures obtained suggest that the aggregation states of the ligand in solution can be transferred to the solid system of the porous coordination networks.

10.
Chemistry ; 25(49): 11512-11520, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31304620

RESUMO

Formation of coordination networks is a complex process affected by a multitude of factors. Many synthetic strategies have been developed that attempt to control these factors and direct the structure of the final product. Coordination bond formation and structural assembly processes, however, typically take place either in the solution or solid states. In comparison, gas-phase network synthesis remains largely unexplored. Herein, two new two-dimensional coordination networks are obtained from the solid-gas phase reaction between ZnX2 (X=I, Br) and the redox-active 2,5,8-tri(4-pyridyl)1,3-diazaphenalene (HTPDAP) ligand. Their structures were solved by ab initio powder X-ray diffraction analysis and feature a novel Zn halide trimeric cluster. This strategy is contrasted with a conventional solvothermal synthesis, which led to a one-dimensional coordination polymer instead. The intrinsic electroactive properties of these materials were probed by solid-state cyclic voltammetry measurements, which revealed the presence of HTPDAP and halide-based processes. Chemical oxidation of the two-dimensional networks by using NOPF6 agent, unexpectedly, led to the formation of a nitrated analog of HTPDAP, the PF6 - salt of diprotonated 4,6,7,9-tetranitro-2,5,8-tris(4-pyridyl)diazaphenalene cation (denoted N-TPDAP), which was isolated and characterized. These results provide deeper insights into the oxidation process of HTPDAP-containing networks and uncover unique redox-induced chemical transformations.

11.
Inorg Chem ; 57(21): 13079-13082, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30354098

RESUMO

A platinum(II) terpyridine complex having an enantiopure lactate anion afforded hydrated crystals l- or d-1hyd containing infinite chains of interacting Pt centers, while their dehydration induced crystal-to-crystal transformation into l- or d-1dehyd, respectively, exhibiting less significant Pt-Pt and/or ligand-ligand interactions. That transformation was accompanied by changes in the color as well as the photochemical reactivity of the crystals, where l-1dehyd showed higher reactivity than l-1hyd in the presence of amines under visible-light irradiation.

12.
Inorg Chem ; 57(24): 15158-15171, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30485078

RESUMO

Trimethylamine N-oxide (Me3NO) could selectively remove only one CO ligand from fac-[Re(N^N)(CO)3(PR2R')]+ (N^N = diimine ligand), whereby only the CO ligand in the trans position to the phosphorus ligand was selectively removed to give cis,trans-[ReI(N^N)(CO)2(PR2R')(L)] n+ in good yields. This decarbonylation reaction using Me3NO was found to be especially useful for synthesizing biscarbonyl Re(I) complexes with electron-withdrawing groups in the diimine ligand, which could not be synthesized or were obtained only in low yields by the photochemical method. Me3NO also selectively removed the carbonyl ligands in the trans position to the phosphorus ligands from the edge Re(I) complex units, which have the fac-[Re(N^N)(CO)3(PR2R')]+ structure, in linear-shaped Re(I) multinuclear complexes. This reaction was successfully applied to synthesize a novel precursor with ring-shaped multinuclear Re complexes (Re-rings) comprising different kinds of Re(I) units. The newly synthesized Re-rings, which consist of one Re unit with a 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (CF3bpy) ligand and one or two Re unit(s) with a 2,2'-bipyridine (bpy) ligand, showed almost quantitative excitation-energy harvesting ability from the Re unit(s) with bpy to that with CF3bpy.

13.
Inorg Chem ; 57(16): 9683-9695, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29547281

RESUMO

An iron(III) complex having a dibenzotetraethyltetraamido macrocyclic ligand (DTTM4-), (NEt4)2[FeIII(DTTM)Cl] (1), was synthesized and characterized by crystallographic, spectroscopic, and electrochemical methods. Complex 1 has a square-pyramidal structure in the S = 3/2 spin state. The complex exhibited two reversible redox waves at +0.36 and +0.68 V (vs SCE) in the cyclic voltammogram measured in CH2Cl2 at room temperature. The stepwise oxidation of 1 using chemical oxidants allowed us to observe clear and distinct spectral changes with distinct isosbestic points for each step, in which oxidation occurred at the phenylenediamido moiety rather than the iron center. One-electron oxidation of 1 by 1 equiv of [RuIII(bpy)3](ClO4)3 (bpy = 2,2'-bipyridine) in CH2Cl2 afforded square-pyramidal (NEt4)[Fe(DTTM)Cl] (2), which was in the S = 1 spin state involving a ligand radical and showed a slightly distorted square-pyramidal structure. Complex 2 showed an intervalence charge-transfer band at 900 nm, which was assigned on the basis of time-dependent density functional theory calculations, to indicate that the complex is in a class IIA mixed-valence ligand-radical regime with Hab = 884 cm-1. Two-electron oxidation of 1 by 2 equiv of [(4-Br-Ph)3N•+](SbCl6) in CH2Cl2 afforded two-electron-oxidized species of 1, [Fe(DTTM)Cl] (3), which was in the S = 1/2 spin state; complex 3 exhibited a distorted square-pyramidal structure. X-ray absorption near-edge structure spectra of 1-3 were measured in both CH3CN solutions and BN pellets to observe comparable rising-edge energies for the three complexes, and Mössbauer spectra of 1-3 showed almost identical isomer shifts and quadruple splitting parameters, indicating that the iron centers of the three complexes are intact to be in the intermediate-spin iron(III) state. Thus, in complexes 2 and 3, it is evident that antiferromagnetic coupling is operating between the unpaired electron(s) of the ligand radical(s) and those of the iron(III) center.

14.
Angew Chem Int Ed Engl ; 57(17): 4717-4721, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29450956

RESUMO

The multistate redox-active/multi-interactive ligand 5,5',8,8'-tetra(4-pyridyl)-2,2'-(1,4-phenylene)bis-1H-perimidine (H2 TPP) was designed and synthesized. H2 TPP undergoes four one-electron oxidation steps, and was used for the preparation of a multistate redox-active coordination network in a solid-liquid interface reaction using molten Cd2+ salts. The multiple redox states of H2 TPP were confirmed spectroscopically by stepwise four-electron oxidation. Spectroscopic analysis indicated that the mixed-valence states of the ligand are class II on the UV/Vis/NIR timescale and borderline class II/class III on the ESR timescale.

15.
Chemistry ; 23(19): 4551-4556, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248439

RESUMO

Heterometallic Gd-Pt complexes ([Gd2 Pt3 (H2 O)2 (SAc)12 ] (SAc=thioacetate), [Y1.4 Gd0.6 Pt3 (H2 O)2 (SAc)12 ], and [Gd2 Pt3 (H2 O)6 (SAc)12 ]⋅7 H2 O have been synthesized. The crystal structures and DFT calculations indicated a Gd-Pt heretometallic bond. Single-crystal ESR spectra determined the direction of magnetic anisotropy as direction of the Gd-Pt bond. In other words, the Gd-Pt bond dictates the direction of magnetic anisotropy. The heterometallic Gd-Pt bond lowers the symmetry of the Gd ion, splitting the Kramers doublet in a dc field. Thus, we observed clear field-induced slow magnetic relaxation of [Y1.4 Gd0.6 Pt3 (H2 O)2 (SAc)12 ] up to 36 K. The relaxation process was determined to be a direct process.

16.
Inorg Chem ; 56(15): 8735-8738, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28703577

RESUMO

By changing the rate of evaporation, two kinds of crystalline films composed of redox-active porous coordination networks (1 and 2) were selectively prepared on a gold-patterned substrate using a DMF solution of 2,5,8-tri(4-pyridyl)1,3-diazaphenalene and Cd(NO3)2. We found the highly sensitive humidity sensing ability of film 1. Single crystal structures and infrared spectroscopic analyses before and after hydration of a single crystal of 1 revealed the sensing mechanism: exchange of nitrate ions with water on Cd atoms occurred in hydrated conditions to generate a conductive cationic network.

17.
Angew Chem Int Ed Engl ; 55(17): 5184-9, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26991042

RESUMO

A neutral mononuclear Fe(III) complex [Fe(III) (H-5-Br-thsa-Me)(5-Br-thsa-Me)]⋅H2 O (1; H2 -5-Br-thsa-Me=5-bromosalicylaldehyde methylthiosemicarbazone) was prepared that exhibited a three-step spin-crossover (SCO) with symmetry breaking and a 14 K hysteresis loop owing to strong cooperativity. Two ordered intermediate states of 1 were observed, 4HS-2LS and 2HS-4LS, which exhibited reentrant phase-transition behavior. This study provides a new platform for examining multistability in SCO complexes.

18.
Adv Sci (Weinh) ; 11(2): e2307417, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985922

RESUMO

A coordination network containing isolated pores without interconnecting channels is prepared from a tetrahedral ligand and copper(I) iodide. Despite the lack of accessibility, CO2 is selectively adsorbed into these pores at 298 K and then retained for more than one week while exposed to the atmosphere. The CO2 adsorption energy and diffusion mechanism throughout the network are simulated using Matlantis, which helps to rationalize the experimental results. CO2 enters the isolated voids through transient channels, termed "magic doors", which can momentarily appear within the structure. Once inside the voids, CO2 remains locked in limiting its escape. This mechanism is facilitated by the flexibility of organic ligands and the pivot motion of cluster units. In situ powder X-ray diffraction revealed that the crystal structure change is negligible before and after CO2 capture, unlike gate-opening coordination networks. The uncovered CO2 sorption and retention ability paves the way for the design of sorbents based on isolated voids.

19.
Nat Commun ; 15(1): 81, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167264

RESUMO

We introduce a versatile metal-organic framework (MOF) for encapsulation and immobilization of various guests using highly ordered internal water network. The unique water-mediated entrapment mechanism is applied for structural elucidation of 14 bioactive compounds, including 3 natural product intermediates whose 3D structures are clarified. The single-crystal X-ray diffraction analysis reveals that incorporated guests are surrounded by hydrogen-bonded water networks inside the pores, which uniquely adapt to each molecule, providing clearly defined crystallographic sites. The calculations of host-solvent-guest structures show that the guests are primarily interacting with the MOF through weak dispersion forces. In contrast, the coordination and hydrogen bonds contribute less to the total stabilization energy, however, they provide highly directional point interactions, which help align the guests inside the pore.

20.
J Am Chem Soc ; 135(31): 11449-52, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23879312

RESUMO

S3 is one of the basic allotropes of sulfur but is still a mysterious labile species. We selectively trapped S3 in a pore of a thermally stable coordination network and determined S3 structure by ab initio X-ray powder diffraction analysis. S3 in a pore has a C2v bent structure. The network containing trapped S3 is remarkably stable under ambient conditions and is inert to photoirradiation. S3 in the network could be transformed to S6 by mechanical grinding or heating in the presence of NH4X (X = Cl or Br). S6 could be reverse-transformed to S3 by photoirradiation. We also determined the structure of the network containing S6 by ab initio X-ray powder diffraction analysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa