Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34622924

RESUMO

Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.


Assuntos
Gryllidae/metabolismo , Membro Posterior/fisiologia , Proteínas de Insetos/biossíntese , Regeneração , Transdução de Sinais , Receptores Toll-Like/biossíntese , Animais , Regulação da Expressão Gênica , Gryllidae/genética , Proteínas de Insetos/genética , Receptores Toll-Like/genética
2.
J Biol Chem ; 299(8): 105020, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423300

RESUMO

Mammalian type opsin 5 (Opn5m), a UV-sensitive G protein-coupled receptor opsin highly conserved in vertebrates, would provide a common basis for UV sensing from lamprey to humans. However, G protein coupled with Opn5m remains controversial due to variations in assay conditions and the origin of Opn5m across different reports. Here, we examined Opn5m from diverse species using an aequorin luminescence assay and Gα-KO cell line. Beyond the commonly studied major Gα classes, Gαq, Gα11, Gα14, and Gα15 in the Gq class were individually investigated in this study, as they can drive distinct signaling pathways in addition to a canonical calcium response. UV light triggered a calcium response via all the tested Opn5m proteins in 293T cells, which was abolished by Gq-type Gα deletion and rescued by cotransfection with mouse and medaka Gq-type Gα proteins. Opn5m preferentially activated Gα14 and close relatives. Mutational analysis implicated specific regions, including α3-ß5 and αG-α4 loops, αG and α4 helices, and the extreme C terminus, in the preferential activation of Gα14 by Opn5m. FISH revealed co-expression of genes encoding Opn5m and Gα14 in the scleral cartilage of medaka and chicken eyes, supporting their physiological coupling. This suggests that the preferential activation of Gα14 by Opn5m is relevant for UV sensing in specific cell types.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Opsinas , Humanos , Camundongos , Animais , Opsinas/genética , Opsinas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Cálcio/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Opsinas de Bastonetes/metabolismo , Mamíferos/metabolismo
3.
J Biol Chem ; 299(7): 104899, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295773

RESUMO

Opsins are universal photosensitive proteins in animals. Vertebrates have a variety of opsin genes for visual and non-visual photoreceptions. Analysis of the gene structures shows that most opsin genes have introns in their coding regions. However, teleosts exceptionally have several intron-less opsin genes that are presumed to have been duplicated by an RNA-based gene duplication mechanism, retroduplication. Among these retrogenes, we focused on the Opn4 (melanopsin) gene responsible for non-image-forming photoreception. Many teleosts have five Opn4 genes including one intron-less gene, which is speculated to have been formed from a parental intron-containing gene in the Actinopterygii. In this study, to reveal the evolutionary history of Opn4 genes, we analyzed them in teleost (zebrafish and medaka) and non-teleost (bichir, sturgeon, and gar) fishes. Our synteny analysis suggests that the intron-less Opn4 gene emerged by retroduplication after the branching of the bichir lineage. In addition, our biochemical and histochemical analyses showed that, in the teleost lineage, the newly acquired intron-less Opn4 gene became abundantly used without substantial changes in the molecular properties of the Opn4 protein. This stepwise evolutionary model of Opn4 genes is quite similar to that of rhodopsin genes in the Actinopterygii. The unique acquisition of rhodopsin and Opn4 retrogenes would have contributed to the diversification of the opsin gene repertoires in the Actinopterygii and the adaptation of teleosts to various aquatic environments.


Assuntos
Evolução Molecular , Peixes , Íntrons , Opsinas , Animais , Peixes/genética , Peixes/fisiologia , Opsinas/genética , Opsinas/metabolismo , Filogenia , Rodopsina/genética , Rodopsina/metabolismo , Peixe-Zebra/genética , Oryzias/genética , Sintenia/genética
4.
Cell Tissue Res ; 391(2): 249-267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36418571

RESUMO

Eyes shut homolog (EYS) encodes a proteoglycan and the human mutation causes retinitis pigmentosa type 25 (RP25) with progressive retinal degeneration. RP25 most frequently affects autosomal recessive RP patients with many ethnic backgrounds. Although studies using RP models have facilitated the development of therapeutic medications, Eys has been lost in rodent model animals. Here we examined the roles for Eys in the maintenance of photoreceptor structure and function by generating eys-null medaka fish using the CRISPR-Cas9 system. Medaka EYS protein was present near the connecting cilium of wild-type photoreceptors, while it was absent from the eys-/- retina. The mutant larvae exhibited a reduced visual motor response compared with wild-type. In contrast to reported eys-deficient zebrafish at the similar stage, no retinal cell death was detected in the 8-month post-hatching (8-mph) medaka eys mutant. Immunohistochemistry showed a significant reduction in the length of cone outer segments (OSs), retention of OS proteins in the inner segments of photoreceptors, and abnormal filamentous actin network at the base of cone OSs in the mutant retina by 8 mph. Electron microscopy revealed aberrant structure of calyceal processes, numerous vesiculation and lamellar interruptions, and autophagosomes in the eys-mutant cone photoreceptors. In situ hybridization showed an autophagy component gene, gabarap, was ectopically expressed in the eys-null retina. These results suggest eys is required for regeneration of OS, especially of cone photoreceptors, and transport of OS proteins by regulating actin filaments. Enhanced autophagy may delay the progression of retinal degeneration when lacking EYS in the medaka retina.


Assuntos
Oryzias , Degeneração Retiniana , Animais , Humanos , Oryzias/genética , Oryzias/metabolismo , Degeneração Retiniana/genética , Peixe-Zebra/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Mutação/genética , Opsinas/metabolismo , Autofagia/genética
5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761995

RESUMO

The vertebrate body comprises four distinct cell populations: cells derived from (1) ectoderm, (2) mesoderm, (3) endoderm, and (4) neural crest cells, often referred to as the fourth germ layer. Neural crest cells arise when the neural plate edges fuse to form a neural tube, which eventually develops into the brain and spinal cord. To date, the embryonic origin of exocrine glands located in the head and neck remains under debate. In this study, transgenic TRiCK mice were used to investigate the germinal origin of the salivary and lacrimal glands. TRiCK mice express fluorescent proteins under the regulatory control of Sox1, T/Brachyury, and Sox17 gene expressions. These genes are representative marker genes for neuroectoderm (Sox1), mesoderm (T), and endoderm (Sox17). Using this approach, the cellular lineages of the salivary and lacrimal glands were examined. We demonstrate that the salivary and lacrimal glands contain cells derived from all three germ layers. Notably, a subset of Sox1-driven fluorescent cells differentiated into epithelial cells, implying their neural crest origin. Also, these Sox1-driven fluorescent cells expressed high levels of stem cell markers. These cells were particularly pronounced in duct ligation and wound damage models, suggesting the involvement of neural crest-derived epithelial cells in regenerative processes following tissue injury. This study provides compelling evidence clarifying the germinal origin of exocrine glands and the contribution of neural crest-derived cells within the glandular epithelium to the regenerative response following tissue damage.


Assuntos
Aparelho Lacrimal , Crista Neural , Camundongos , Animais , Crista Neural/metabolismo , Ectoderma , Camadas Germinativas , Mesoderma/metabolismo , Camundongos Transgênicos , Epitélio
6.
BMC Oral Health ; 23(1): 108, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36805677

RESUMO

BACKGROUND: Oral care with gel is a common method for preventing aspiration in high-risk patients. An oral care gel is used to clean and moisturize the oral cavity. However, the effects of gel care on the oral bacteria remain unclear. In this pilot study, we described a matching transformation system (MA-T) for elderly high-risk patients. MA-T is an on-demand aqueous chlorine dioxide solution that provides excellent safety and has various antimicrobial activities, even in the presence of abundant organic compounds. This study investigated the effects of MA-T gel in patients requiring nursing care. MATERIALS AND METHODS: Patients who were hospitalized for nursing care were included in this study. No drugs and foods were administered orally. Oral bacteria and intraoral humidity were examined by daily care using MA-T gel. Moreover, oral membranous substances were analyzed and material from the oral cavity was cultured on selective media for identifying opportunistic organisms. RESULTS: Membranous substances were present in the oral cavities of all patients. The number of bacteria decreased, and oral moisture improved, after treatment with MA-T gel. Moreover, oral humidity was also controlled with the continued use of MA-T gel. MA-T gels should be used not only for professional care but also on a daily basis for better oral care. Furthermore, the results of bacterial cultures showed that MA-T controls the propagation of opportunistic bacterial infections. CONCLUSION: Membranous substances may be observed in the oral cavity of individuals requiring nursing care for tube feeding. The results of this pilot study suggest that MA-T, a novel disinfectant, can be used for oral care in the elderly to reduce the risk of aspiration-pneumonia.


Assuntos
Desinfetantes , Idoso , Humanos , Projetos Piloto , Géis , Boca , Pacientes
7.
Biochem Biophys Res Commun ; 566: 184-189, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34129966

RESUMO

The uncoupling protein 1 (UCP1) gene is known to be highly expressed in brown adipose tissue (BAT) that functions in thermogenesis. It has been shown that UCP1 mRNA is localized to the mouse adrenal gland, but its significance remains elusive. To explore how UCP1 expression in the adrenal gland is regulated, we generated a reporter knock-in mouse in which the GFP gene was inserted into the UCP1 locus using CRISPR-Cas9 system. Firstly, we confirmed by Western blot analysis UCP1-driven GFP protein expression in interscapular BAT of the knock-in mice kept at 4 °C. Immunohistochemistry showed that GFP protein was detected in the adrenal gland of the knock-in mice. More intense GFP expression was observed in the adrenal medulla than in the cortex of the reporter mice irrespectively of cold exposure. Immunohistochemistry using anti-UCP1 antibody, as well as Western blot analysis verified UCP1 protein expression in the wild-type adrenal medulla. These results suggest that the mouse adrenal gland is a novel organ expressing UCP1 protein and its expression is not upregulated by cold exposure.


Assuntos
Glândulas Suprarrenais/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Animais , Feminino , Expressão Gênica , Camundongos Endogâmicos ICR , Regulação para Cima
8.
Cell Tissue Res ; 379(1): 157-167, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31673758

RESUMO

REIC (reduced expression in immortalized cells) has been identified as a gene whose expression was reduced in immortalized cultured cells. The REIC gene is identical to Dickkopf-3 (Dkk3), which encodes a secreted glycoprotein belonging to the Dkk family. Previously, we showed that Dkk3 protein is present in the mouse adrenal medulla. However, its role in this tissue has not been elucidated. To explore it, we performed electron microscopic (EM) studies and RNA-sequencing (RNA-seq) analysis on Dkk3-null adrenal glands. EM studies showed that the number of dense core secretory vesicles were significantly reduced and empty vesicles were increased in the medulla endocrine cells. Quantitative PCR (qPCR) analysis showed relative expression levels of chromogranin A (Chga) and neuropeptide Y (Npy) were slightly but significantly reduced in the Dkk3-null adrenal glands. From the result of RNA-seq analysis as a parallel study, we selected three of the downregulated genes, uncoupled protein-1 (Ucp1), growth arrest and DNA-damage-inducible 45 gamma (Gadd45g), and Junb with regard to the estimated expression levels. In situ hybridization confirmed that these genes were regionally expressed in the adrenal gland. However, expression levels of these three genes were not consistent as revealed by qPCR. Thus, Dkk3 maintains the integrity of secreting vesicles in mouse adrenal medulla by regulating the expression of Chga and Npy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Medula Suprarrenal/fisiologia , Vesículas Secretórias/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Medula Suprarrenal/citologia , Medula Suprarrenal/ultraestrutura , Animais , Cromogranina A/metabolismo , Regulação para Baixo , Feminino , Hibridização In Situ , Camundongos , Camundongos Knockout , Neuropeptídeo Y/metabolismo , RNA Mensageiro , RNA-Seq , Vesículas Secretórias/ultraestrutura , Transcriptoma
9.
Acta Med Okayama ; 74(3): 199-208, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577017

RESUMO

Dickkopf 3 (Dkk3) is a secreted protein belonging to the Dkk family and encoded by the orthologous gene of REIC. Dkk3/REIC is expressed by mouse and human adrenal glands, but the understanding of its roles in this organ is still limited. To determine the functions of Dkk3 in the mouse adrenal gland, we first identified that the mouse Dkk3 protein is N-glycosylated in the adrenal gland as well as in the brain. We performed proteome analysis on adrenal glands from Dkk3-null mice, in which exons 5 and 6 of the Dkk3 gene are deleted. Twodimensional polyacrylamide gel electrophoresis of adrenal proteins from wild-type and Dkk3-null mice revealed 5 protein spots whose intensities were altered between the 2 genotypes. Mass spectrometry analysis of these spots identified binding immunoglobulin protein (BiP), an endoplasmic reticulum (ER) chaperone. To determine whether mouse Dkk3 is involved in the unfolded protein response (UPR), we carried out a reporter assay using ER-stress responsive elements. Forced expression of Dkk3 resulted in the induction of distinct levels of reporter expression, showing the UPR initiated by the ER membrane proteins of activating transcription factor 6 (ATF6) and inositol-requring enzyme 1 (IRE1). Thus, it is possible that Dkk3 is a physiological ER stressor in the mouse adrenal gland.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Retículo Endoplasmático/genética , Glândulas Suprarrenais/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Reação em Cadeia da Polimerase em Tempo Real
10.
Proc Natl Acad Sci U S A ; 113(20): 5634-9, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140602

RESUMO

Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.


Assuntos
Gryllidae/crescimento & desenvolvimento , Proteínas de Insetos/fisiologia , Hormônios Juvenis/biossíntese , Metamorfose Biológica , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/fisiologia , Interferência de RNA , RNA Mensageiro/análise , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/genética
11.
Development ; 142(17): 2916-27, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253405

RESUMO

Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)(RNAi) and was increased by Gb'Utx(RNAi). Regenerated Gb'E(z)(RNAi) cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'Utx(RNAi) cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)(RNAi) regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'Utx(RNAi) regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.


Assuntos
Epigênese Genética , Extremidades/fisiologia , Gryllidae/genética , Gryllidae/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Regeneração/genética , Sequência de Aminoácidos , Amputação Cirúrgica , Animais , Padronização Corporal/genética , Desdiferenciação Celular , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Articulações/fisiologia , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Homologia de Sequência de Aminoácidos , Tíbia/fisiologia
12.
Dev Growth Differ ; 60(6): 377-386, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30043459

RESUMO

The cricket, Gryllus bimaculatus, is a classic model of leg regeneration following amputation. We previously demonstrated that Gryllus decapentaplegic (Gb'dpp) is expressed during leg regeneration, although it remains unclear whether it is essential for this process. In this study, double-stranded RNA targeting the Smad mathers-against-dpp homolog, Gb'mad, was used to examine the role of bone morphogenetic protein (BMP) signaling in the leg regeneration process of Gryllus bimaculatus. RNA interference (RNAi)-mediated knockdown of Gb'mad led to a loss of tarsus regeneration at the most distal region of regenerating leg segments. Moreover, we confirmed that the phenotype obtained by knockdown of Dpp type I receptor, Thick veins (Gb'tkv), closely resembled that observed for Gb'mad RNAi crickets, thereby suggesting that the BMP signaling pathway is indispensable for the initial stages of tarsus formation. Interestingly, knockdown of Gb'mad and Gb'tkv resulted in significant elongation of regenerating tibia along the proximodistal axis compared with normal legs. Moreover, our findings indicate that during the regeneration of tibia, the BMP signaling pathway interacts with Dachsous/Fat (Gb'Ds/Gb'Ft) signaling and dachshund (Gb'dac) to re-establish positional information and regulate determination of leg size. Based on these observations, we discuss possible roles for Gb'mad in the distal patterning and intercalation processes during leg regeneration in Gryllus bimaculatus.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Gryllidae/metabolismo , Membro Posterior/fisiologia , Proteínas de Insetos/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Gryllidae/genética , Proteínas de Insetos/genética
13.
Development ; 140(5): 959-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23344706

RESUMO

In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb'dome), the Janus kinase Hopscotch (Gb'hop) and the transcription factor STAT (Gb'Stat) were cloned, and RNAi was performed against these genes. Gb'dome(RNAi), Gb'hop(RNAi) and Gb'Stat(RNAi) crickets showed defects in leg regeneration. Blastema expression of Gb'cyclinE was decreased in the Gb'Stat(RNAi) cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb'fat(RNAi) or Gb'warts(RNAi) was suppressed by RNAi against Gb'Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.


Assuntos
Gryllidae , Janus Quinases/fisiologia , Extremidade Inferior/fisiologia , Regeneração/genética , Fatores de Transcrição STAT/fisiologia , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Gryllidae/genética , Gryllidae/metabolismo , Gryllidae/fisiologia , Janus Quinases/genética , Janus Quinases/metabolismo , RNA/análise , RNA/genética , RNA/metabolismo , Regeneração/fisiologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Análise de Sequência de RNA/métodos , Estatística como Assunto/métodos , Transcriptoma/genética , Transcriptoma/fisiologia , Estudos de Validação como Assunto
14.
Acta Med Okayama ; 70(2): 131-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27094838

RESUMO

Human congenital anomalies provide information that contributes to the understanding of developmental mechanisms. Here we report bilateral optic nerve aplasia (ONA) with microphthalmia in the autopsy of the cadaver of a 70-year-old Japanese female. The gross anatomical inspection of the brain showed a cotton thread-like cord in the presumed location of the optic nerve tract or chiasm. Histologically, no neural retina, optic nerve bundle or retinal central vessels were formed in the eye globe, and the retinal pigment cells formed rosettes. The cornea, iris, and lens were also histologically abnormal. Immunohistochemically, no retinal cells expressed beta III tubulin, and Pax6- immunoreactive cells were present in the ciliary non-pigmented epithelial cells. This case of ONA could be attributed to the agenesis of retinal projection neurons as a sequel to the disruption of neural retina development. The neural retina formation would coordinate the proper development of ocular tissues.


Assuntos
Microftalmia/patologia , Doenças do Nervo Óptico/patologia , Retina/patologia , Cadáver , Feminino , Humanos , Retina/crescimento & desenvolvimento
15.
J Biol Chem ; 289(7): 3991-4000, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24403072

RESUMO

Opn5 is one of the recently identified opsin groups that is responsible for nonvisual photoreception in animals. We previously showed that a chicken homolog of mammalian Opn5 (Opn5m) is a Gi-coupled UV sensor having molecular properties typical of bistable pigments. Here we demonstrated that mammalian Opn5m evolved to be a more specialized photosensor by losing one of the characteristics of bistable pigments, direct binding of all-trans-retinal. We first confirmed that Opn5m proteins in zebrafish, Xenopus tropicalis, mouse, and human are also UV-sensitive pigments. Then we found that only mammalian Opn5m proteins lack the ability to directly bind all-trans-retinal. Mutational analysis showed that these characteristics were acquired by a single amino acid replacement at position 168. By comparing the expression patterns of Opn5m between mammals and chicken, we found that, like chicken Opn5m, mammalian Opn5m was localized in the ganglion cell layer and inner nuclear layer of the retina. However, the mouse and primate (common marmoset) opsins were distributed not in the posterior hypothalamus (including the region along the third ventricle) where chicken Opn5m is localized, but in the preoptic hypothalamus. Interestingly, RPE65, an essential enzyme for forming 11-cis-retinal in the visual cycle is expressed near the preoptic hypothalamus of the mouse and common marmoset brain but not near the region of the chicken brain where chicken Opn5m is expressed. Therefore, mammalian Opn5m may work exclusively as a short wavelength sensor in the brain as well as in the retina with the assistance of an 11-cis-retinal-supplying system.


Assuntos
Encéfalo/metabolismo , Evolução Molecular , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Opsinas/metabolismo , Retina/metabolismo , Raios Ultravioleta , Substituição de Aminoácidos , Animais , Callithrix , Embrião de Galinha , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Opsinas/genética , Retinaldeído/genética , Retinaldeído/metabolismo , Xenopus , Peixe-Zebra , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo
16.
Development ; 138(17): 3823-33, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21828099

RESUMO

Delta/Notch signaling controls a wide spectrum of developmental processes, including body and leg segmentation in arthropods. The various functions of Delta/Notch signaling vary among species. For instance, in Cupiennius spiders, Delta/Notch signaling is essential for body and leg segmentation, whereas in Drosophila fruit flies it is involved in leg segmentation but not body segmentation. Therefore, to gain further insight into the functional evolution of Delta/Notch signaling in arthropod body and leg segmentation, we analyzed the function of the Delta (Gb'Delta) and Notch (Gb'Notch) genes in the hemimetabolous, intermediate-germ cricket Gryllus bimaculatus. We found that Gb'Delta and Gb'Notch were expressed in developing legs, and that RNAi silencing of Gb'Notch resulted in a marked reduction in leg length with a loss of joints. Our results suggest that the role of Notch signaling in leg segmentation is conserved in hemimetabolous insects. Furthermore, we found that Gb'Delta was expressed transiently in the posterior growth zone of the germband and in segmental stripes earlier than the appearance of wingless segmental stripes, whereas Gb'Notch was uniformly expressed in early germbands. RNAi knockdown of Gb'Delta or Gb'Notch expression resulted in malformation in body segments and a loss of posterior segments, the latter probably due to a defect in posterior growth. Therefore, in the cricket, Delta/Notch signaling might be required for proper morphogenesis of body segments and posterior elongation, but not for specification of segment boundaries.


Assuntos
Extremidades/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proliferação de Células , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Gryllidae , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Interferência de RNA , Receptores Notch/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Nat Genet ; 37(2): 125-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15654336

RESUMO

Autosomal dominant aplasia of lacrimal and salivary glands (ALSG; OMIM 180920 and OMIM 103420) is a rare condition characterized by irritable eyes and dryness of the mouth. We mapped ALSG to 5p13.2-5q13.1, which coincides with the gene fibroblast growth factor 10 (FGF10). In two extended pedigrees, we identified heterozygous mutations in FGF10 in all individuals with ALSG. Fgf10(+/-) mice have a phenotype similar to ALSG, providing a model for this disorder. We suggest that haploinsufficiency for FGF10 during a crucial stage of development results in ALSG.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Aparelho Lacrimal/anormalidades , Glândulas Salivares/anormalidades , Animais , Sequência de Bases , Cromossomos Humanos Par 5 , Fator 10 de Crescimento de Fibroblastos , Genes Dominantes , Heterozigoto , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem
18.
J Mol Biol ; 436(5): 168319, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865286

RESUMO

Animal opsin is a G-protein coupled receptor (GPCR) and binds retinal as a chromophore to form a photopigment. The Opsin 5 (Opn5) group within the animal opsin family comprises a diverse array of related proteins, such as Opn5m, a protein conserved across all vertebrate lineages including mammals, and other members like Opn5L1 and Opn5L2 found in non-mammalian vertebrate genomes, and Opn6 found in non-therian vertebrate genomes, along with Opn5 homologs present in invertebrates. Although these proteins collectively constitute a single clade within the molecular phylogenetic tree of animal opsins, they exhibit markedly distinct molecular characteristics in areas such as retinal binding properties, photoreaction, and G-protein coupling specificity. Based on their molecular features, they are believed to play a significant role in physiological functions. However, our understanding of their precise physiological functions and molecular characteristics is still developing and only partially realized. Furthermore, their unique molecular characteristics of Opn5-related proteins suggest a high potential for their use as optogenetic tools through more specialized manipulations. This review intends to encapsulate our current understanding of Opn5, discuss potential manipulations of its molecular attributes, and delve into its prospective utility in the burgeoning field of animal opsin optogenetics.


Assuntos
Opsinas , Optogenética , Receptores Acoplados a Proteínas G , Animais , Opsinas/química , Opsinas/classificação , Opsinas/genética , Filogenia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/genética , Sequência Conservada
19.
J Dev Biol ; 12(2)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38921483

RESUMO

The mouse Harderian gland (HG) is a secretory gland that covers the posterior portion of the eyeball, opening at the base of the nictitating membrane. The HG serves to protect the eye surface from infection with its secretions. Mice open their eyelids at about 2 weeks of age, and the development of the HG primordium mechanically opens the eye by pushing the eyeball from its rear. Therefore, when HG formation is disturbed, the eye exhibits enophthalmos (the slit-eye phenotype), and a line of Fgf10+/- heterozygous loss-of-function mice exhibits slit-eye due to the HG atrophy. However, it has not been clarified how and when HGs degenerate and atrophy in Fgf10+/- mice. In this study, we observed the HGs in embryonic (E13.5 to E19), postnatal (P0.5 to P18) and 74-week-old Fgf10+/- mice. We found that more than half of the Fgf10+/- mice had markedly degenerated HGs, often unilaterally. The degenerated HG tissue had a melanized appearance and was replaced by connective tissue, which was observed by P10. The development of HGs was delayed or disrupted in the similar proportion of Fgf10+/- embryos, as revealed via histology and the loss of HG-marker expression. In situ hybridization showed Fgf10 expression was observed in the Harderian mesenchyme in wild-type as well as in the HG-lacking heterozygote at E19. These results show that the Fgf10 haploinsufficiency causes delayed or defective HG development, often unilaterally from the unexpectedly early neonatal period.

20.
Dev Growth Differ ; 55(7): 668-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24024588

RESUMO

Elucidating the mechanisms underlying eye development is essential for advancing the medical treatment of eye-related disorders. The primordium of the eye is an optic vesicle (OV), which has a dual potential for generation of the developing neural retina and retinal pigment epithelium. However, the factors that regulate the differentiation of the retinal primordium remain unclear. We have previously shown that overexpression of Lhx1 and Lhx5, members of the LIM-homeobox genes, induced the formation of a second neural retina from the presumptive pigmented retina of the OV. However, the precise timing of Lhx1 expression required for neural retina differentiation has not been clarified. Moreover, RNA interference of Lhx5 has not been previously reported. Here, using a modified electroporation method, we show that, Lhx1 expression in the forebrain around stage 8 is required for neural retina formation. In addition, we have succeeded in the knockdown of Lhx5 expression, resulting in conversion of the neural retina region to a pigment vesicle-like tissue, which indicates that Lhx5 is also required for neural retina differentiation, which correlates temporally with the activity of Lhx1. These results suggest that Lhx1 and Lhx5 in the forebrain regulate neural retina differentiation by suppressing the development of the retinal pigment epithelium, before the formation of the OV.


Assuntos
Proteínas Aviárias/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Prosencéfalo/metabolismo , Retina/metabolismo , Animais , Proteínas Aviárias/genética , Diferenciação Celular/genética , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Proteínas com Homeodomínio LIM/genética , Prosencéfalo/embriologia , Interferência de RNA , Retina/citologia , Retina/embriologia , Fatores de Transcrição SOXB1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa