Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 211: 113032, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35248563

RESUMO

The chemical profiles of PM2.5 emitted from a non-road diesel generator, wood burning and cooking activities including chicken and beef charcoal grilling and general cooking activities were determined. The characterization included the carbonaceous fraction (OC/EC), water-soluble ions, elements, and organic species comprising n-alkanes, polycyclic aromatic hydrocarbons, carboxylic acids, levoglucosan, dioxins, furans, and dioxin-like polychlorinated biphenyls. The main component in the PM2.5 from the different sources was carbonaceous matter with a mass contribution to PM2.5 of 49% for cooking activities, 53% for wood burning, 66% for beef grilling, 72% for chicken grilling, and 74% for diesel generator with different OC/EC concentration ratios. The analysis of organic compounds contents using diagnostic ratios and indexes showed differences between the sources and revealed specific source markers. The water-soluble ions had the highest contribution in the cooking activities profile with 17% of PM2.5 and the least in the chicken grilling profile (1.1%). Additionally, 29 analyzed elements were identified, and their contribution varied with the sources (ranging from 1% to 11% of PM2.5). These findings could be used to differentiate these sources and could assist in the use of source apportionment methods.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Animais , Bovinos , Culinária , Monitoramento Ambiental , Material Particulado/análise , Água/análise , Madeira/química
2.
Sci Total Environ ; 951: 175416, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142411

RESUMO

Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.

3.
Environ Pollut ; 361: 124769, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173861

RESUMO

Traffic emissions are an important source of air pollution worldwide, but in the Middle East, this problem is exacerbated by weak or no enforcement of emission regulations. Comprehensive measurements of fine PM emission factors (EFs) from road transport in the region have not yet been conducted, but such data are necessary for quantitative assessments of the health impact of transport emissions in the region. To address this need, PM2.5 samples collected inside the Salim Slam tunnel in Beirut, Lebanon were analyzed for carbonaceous matter (organic carbon (OC) and elemental carbon (EC)), water-soluble ions, elements, and selected organic compounds. The OC/EC ratio was 1.8 for the total fleet and 2.6 for light-duty vehicles (LDV), in agreement with the dominant proportion of gasoline LDV in the Lebanese fleet. A Cu/Sb ratio of 4.2 ± 0.1 was observed, offering a valuable metric for detecting brake wear emissions in subsequent studies conducted in the region. The EFs of carbonaceous matter, elements and ions generally varied by a factor 0.1 and 10 in comparison to literature values, while those for alkanes and polycyclic aromatic hydrocarbons were similar to the upper values previously reported. The average number size distribution was characterized by a single mode around 35 nm. The particles number EF (for diameters between 10 and 480 nm) was within the range of 1014-1015 particles per kg of fuel. The chemical mass balance model showed an average contribution to EF of 62% from non-exhaust sources. This study highlights the need for more enforceable stringent vehicular regulations because of the local practices (i.e., removal of catalyst) and some EF values are very high compared to other studies/countries.

4.
Environ Int ; 186: 108610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626495

RESUMO

Greater Cairo, the largest megacity of the Middle East North Africa (MENA) region, is currently suffering from major aerosol pollution, posing a significant threat to public health. However, the main sources of pollution remain insufficiently characterized due to limited atmospheric observations. To bridge this knowledge gap, we conducted a continuous 2-month field study during the winter of 2019-2020 at an urban background site, documenting for the first time the chemical and physical properties of submicron (PM1) aerosols. Crustal material from both desert dust and road traffic dust resuspension contributed as much as 24 % of the total PM1 mass (rising to 66 % during desert dust events), a figure not commonly observed in urban environments. Our observations showed significant decreases in black carbon concentrations and ammonium sulfate compared to data from 15 years ago, indicating an important reduction in both local and regional emissions as a result of effective mitigation measures. The diurnal variability of carbonaceous aerosols was attributed to emissions emanating from local traffic at rush hours and nighttime open biomass burning. Surprisingly, semi-volatile ammonium chloride (NH4Cl) originating from local open biomass and waste burning was found to be the main chemical species in PM1 over Cairo. Its nighttime formation contributed to aerosol water uptake during morning hours, thereby playing a major role in the build-up of urban haze. While our results confirm the persistence of a significant dust reservoir over Cairo, they also unveil an additional source of highly hygroscopic (semi-volatile) inorganic salts, leading to a unique type of urban haze. This haze, with dominant contributors present in both submicron (primarily as NH4Cl) and supermicron (largely as dust) modes, underscores the potential implications of heterogeneous chemical transformation of air pollutants in urban environments.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Egito , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise , Cidades , Poeira/análise , Tamanho da Partícula
5.
Sci Total Environ ; 893: 164741, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295521

RESUMO

A total of 348 daily PM2.5 samples were collected at an urban background site of Nicosia, capital of Cyprus, for one-year period (October 2018-October 2019) to assess the origin and sources of fine PM at the Eastern Mediterranean, a poorly characterized area of the world. The samples were analysed for water soluble ionic species, elemental and organic carbon, carbohydrates and trace metals, the combination of which were utilized to identify pollution sources by applying Positive Matrix Factorization (PMF). Six PM2.5 sources, namely long-range transport (LRT; 38 %), traffic (20 %), biomass burning (16 %), dust (10 %), sea salt (9 %) and heavy oil combustion (7 %), were identified. Despite sampling in an urban agglomeration, the chemical fingerprint of the aerosol is largely dictated by air mass origin rather than local sources. Springtime is characterized by the most elevated particulate levels due to the southerly air masses carrying particles from the Sahara Desert. Northerlies are observed throughout the year but are predominant during summer allowing the LRT source to peak (54 % during summer). Only during winter, due to extensive use of biomass combustion for domestic heating (36.6 % during winter), local sources dominate. A co-located online PMF source apportionment of submicron carbonaceous aerosols (Organic Aerosols, OA; Black Carbon) was performed by the means of an Aerosol Chemical Speciation Monitor (for OA) and an Aethalometer (for BC) for a four-month period. The comparison between the two methodologies allowed to better assess the robustness and limitations of the two methodologies. More specifically, LRT OA and biomass burning BC apportioned by the offline PMF showed a strong consistency with the online apportioned more oxidized oxygenated OA and BCwb, respectively; cross validating these sources. On the other hand, our traffic factor may contain additional hydrocarbon-like OA and BC from fossil fuel sources other than just vehicular emissions. Finally, the offline biomass burning OA source is likely to contain both primary and secondary OA.

6.
J Hazard Mater ; 439: 129544, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35908394

RESUMO

The present study investigated comprehensively the atmospheric occurrence and fate of an extensive range of polychlorinated biphenyls (PCBs; forty-two congeners), organochlorine pesticides (OCPs; twenty-seven emerging and legacy agrochemicals) and polycyclic aromatic hydrocarbons (PAHs; fifty parent and alkylated members, including the non USEPA-16 listed toxic ones), in both gas and particulate phase of the scarcely monitored atmosphere over Cyprus for the first time. Parent-metabolite concentration ratios suggested fresh application for dichlorodiphenyl-trichloroethanes (DDTs), dicofol, hexachlorocyclohexanes, endosulfan and chlorothalonil, particularly during spring (April-May). Regressions of logarithms of partial pressure against ambient temperature revealed that secondary recycling from contaminated terrestrial surfaces regulates the atmospheric level variability of PCBs, DDTs, aldrin, chlordane, dicofol, heptachlor and endosulfan. Enthalpies of surface-air exchange (∆HSA) calculated from Clausius-Clapeyron equations were significantly correlated to vaporization enthalpies (∆HV) determined by chromatographic techniques, corroborating presence of potential stockpile-contaminated sites around the study area. The Harner-Bidleman equilibrium model simulating urban areas, and the Li-Jia empirical model, predicted better the partitioning behavior of PAHs (

Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Chipre , Dicofol/análise , Endossulfano , Monitoramento Ambiental/métodos , Humanos , Hidrocarbonetos Clorados/análise , Meteorologia , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa