Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431768

RESUMO

Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)2(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)2]+ and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)2{(MeImCH2)2CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings.

2.
Inorg Chem ; 55(11): 5719-28, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27177080

RESUMO

Reacting cesium fluoride with an equimolar n-hexane solution of lithium bis(trimethylsilyl)amide (LiHMDS) allows the isolation of CsHMDS (1) in 80% yield (after sublimation). This preparative route to 1 negates the need for pyrophoric Cs metal or organocesium reagents in its synthesis. If a 2:1 LiHMDS:CsF ratio is employed, the heterobimetallic polymer [LiCs(HMDS)2]∞ 2 was isolated (57% yield). By combining equimolar quantities of NaHMDS and CsHMDS in hexane/toluene [toluene·NaCs(HMDS)]∞ 3 was isolated (62% yield). Attempts to prepare the corresponding potassium-cesium amide failed and instead yielded the known monometallic polymer [toluene·Cs(HMDS)]∞ 4. With the aim of expanding the structural diversity of Cs(HMDS) species, 1 was reacted with several different Lewis basic donor molecules of varying denticity, namely, (R,R)-N,N,N',N'-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] and N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA), tris[2-(dimethylamino)ethyl]amine (Me6-TREN) and tris[2-(2-methoxyethoxy)ethyl]amine (TMEEA). These reactions yielded dimeric [donor·NaCs(HMDS)2]2 5-7 [where donor is (R,R)-TMCDA, TMEDA and PMDETA respectively], the tetranuclear "open"-dimer [{Me6-TREN·Cs(HMDS)}2{Cs(HMDS)}2] 8 and the monomeric [TMEEA·Cs(HMDS)] 9. Complexes 2, 3, and 5-9 were characterized by X-ray crystallography and in solution by multinuclear NMR spectroscopy.

3.
Inorg Chem ; 54(20): 9833-44, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26417943

RESUMO

When n-hexane solutions of an excess of sodium bis(trimethylsilyl)amide (NaHMDS) are combined with cesium halide (halide = Cl, Br, or I) in the presence of the tetradentate donor molecule [tris[2-(dimethylamino)ethyl]amine] (Me6TREN), the isolation and characterization of a series of sodium amide/sodium halide mixed aggregates was forthcoming. Cesium halide was employed because it efficiently reacted with NaHMDS to produce a molecular, soluble source of sodium halide salt (which was subsequently captured by an excess of NaHMDS) via a methathetical reaction. These mixed sodium amide/sodium halide complexes are formally sodium sodiates, are deficient in halide with respect to the amide, and have the general formula [{Na5(µ-HMDS)5(µ5-X)}{Na(Me6TREN)}] [where X = Cl (1), Br (2), or I (3)]. The influence of the donor ligand was studied for the NaI/NaHMDS system, and when n-hexane solutions of this composition were treated with tridentate donors such as N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA) or N,N,N',N'-tetramethyldiaminoethyl ether (TMDAE), solvent-separated ion-pair cocomplexes [Na5(µ-HMDS)5(µ5-I)](-)[Na3(µ-HMDS)2(PMDETA)2](+) (4) and [Na5(µ-HMDS)5(µ5-I)](-)[Na(TMDAE)2](+) (5) were isolated. However, upon reaction with bidentate proligands such as the chiral diamine (R,R)-N,N,N',N'-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] or N,N,N',N'-tetramethylethylenediamine (TMEDA), neutral complexes [Na4(µ-HMDS)3(µ4-I)(donor)2] [donor = (R,R)-TMCDA (6) and TMEDA (7)] were produced. To illustrate the generality of the latter reaction with other halides, [Na4(µ-HMDS)3(µ4-Br)(TMEDA)2] (8) was also prepared by employing NaBr in the synthesis instead of NaI.

4.
Dalton Trans ; 51(3): 817-830, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34904607

RESUMO

This frontiers article highlights recent developments on the application of transition metal-based zwitterionic complexes in catalysis. Recent applications of selected zwitterionic catalysts in polymerization reactions, including the carbonylative polymerization of cyclic ethers, carbon-carbon coupling reactions, the asymmetric hydrogenation of unfunctionalized olefins, and the hydrofunctionalization of alkenes are reviewed. In addition, advances in the field of hydrogenation/dehydrogenation reactions related to energy applications, including the hydrogenation of CO2 and the dehydrogenation of formic acid and N-heterocycles, the functionalization of CO2 with amines and hydrosilanes, and the valorization of polyfunctional bio-based feedstocks, such as the dehygrogenation of glycerol to lactic acid or the reduction of levulinic acid into γ-valerolactone, are also described.

5.
Dalton Trans ; 46(19): 6392-6403, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28466908

RESUMO

The structural chemistry of eleven donor complexes of the important Brønsted base potassium 1,1,1,3,3,3-hexamethyldisilazide (KHMDS) has been studied. Depending on the donor, each complex adopted one of five general structural motifs. Specifically, in this study the donors employed were toluene (to give polymeric 1 and dimeric 2), THF (polymeric 3), N,N,N',N'-tetramethylethylenediamine (TMEDA) (dimeric 4), (R,R)-N,N,N',N'-tetramethyl-1,2-diaminocyclohexane [(R,R)-TMCDA] (dimeric 5), 12-crown-4 (dimeric 6), N,N,N',N'-tetramethyldiaminoethyl ether (TMDAE) (tetranuclear dimeric 8 and monomeric 10), N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) (tetranuclear dimeric 7), tris[2-dimethyl(amino)ethyl]amine (Me6TREN) (tetranuclear dimeric 9) and tris{2-(2-methoxyethoxy)ethyl}amine (TMEEA) (monomeric 11). The complexes were also studied in solution by 1H and 13C NMR spectroscopy as well as DOSY NMR spectroscopy.

6.
Chem Commun (Camb) ; 53(2): 324-327, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27958607

RESUMO

After isolating an unusual binuclear, but monosolvated NaHMDS complex [{(R,R)-TMCDA}·(NaHMDS)2]∞ which polymerises via intermolecular electrostatic NaMeHMDS interactions, further (R,R)-TMCDA was added to produce the discrete binuclear amide [{κ2-(R,R)-TMCDA}·(NaHMDS)2{κ1-(R,R)-TMCDA}], whose salient feature is the unique monodentate coordination of one of the chiral diamine ligands.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa