Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000569

RESUMO

Regulation of neuroinflammation is critical for maintaining central nervous system (CNS) homeostasis and holds therapeutic promise in autoimmune diseases such as multiple sclerosis (MS). Previous studies have highlighted the significance of selective innate signaling in triggering anti-inflammatory mechanisms, which play a protective role in an MS-like disease, experimental autoimmune encephalomyelitis (EAE). However, the individual intra-CNS administration of specific innate receptor ligands or agonists, such as for toll-like receptor 7 (TLR7) and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2), failed to elicit the desired anti-inflammatory response in EAE. In this study, we investigated the potential synergistic effect of targeting both TLR7 and NOD2 simultaneously to prevent EAE progression. Our findings demonstrate that simultaneous intrathecal administration of NOD2- and TLR7-agonists led to synergistic induction of Type I IFN (IFN I) and effectively suppressed EAE in an IFN I-dependent manner. Suppression of EAE was correlated with a significant decrease in the infiltration of monocytes, granulocytes, and natural killer cells, reduced demyelination, and downregulation of IL-1ß, CCL2, and IFNγ gene expression in the spinal cord. These results underscore the therapeutic promise of concurrently targeting the TLR7 and NOD2 pathways in alleviating neuroinflammation associated with MS, paving the way for novel and more efficacious treatment strategies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Proteína Adaptadora de Sinalização NOD2 , Receptor 7 Toll-Like , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Imunidade Inata/efeitos dos fármacos , Feminino , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232593

RESUMO

Type I interferons (IFN), including IFNß, play a protective role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Type I IFNs are induced by the stimulation of innate signaling, including via cytoplasmic RIG-I-like receptors. In the present study, we investigated the potential effect of a chimeric protein containing the key domain of RIG-I signaling in the production of CNS endogenous IFNß and asked whether this would exert a therapeutic effect against EAE. We intrathecally administered an adeno-associated virus vector (AAV) encoding a fusion protein comprising RIG-I 2CARD domains (C) and the first 200 amino acids of mitochondrial antiviral-signaling protein (MAVS) (M) (AAV-CM). In vivo imaging in IFNß/luciferase reporter mice revealed that a single intrathecal injection of AAV-CM resulted in dose-dependent and sustained IFNß expression within the CNS. IFNß expression was significantly increased for 7 days. Immunofluorescent staining in IFNß-YFP reporter mice revealed extraparenchymal CD45+ cells, choroid plexus, and astrocytes as sources of IFNß. Moreover, intrathecal administration of AAV-CM at the onset of EAE induced the suppression of EAE, which was IFN-I-dependent. These findings suggest that accessing the signaling pathway downstream of RIG-I represents a promising therapeutic strategy for inflammatory CNS diseases, such as MS.


Assuntos
Encefalomielite Autoimune Experimental , Interferon Tipo I , Aminoácidos , Animais , Antivirais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Proteínas Recombinantes de Fusão , Transdução de Sinais
3.
Nat Commun ; 13(1): 5014, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008394

RESUMO

The basal nucleus of Meynert (NBM) subserves critically important functions in attention, arousal and cognition via its profound modulation of neocortical activity and is emerging as a key target in Alzheimer's and Parkinson's dementias. Despite the crucial role of neocortical domains in pain perception, however, the NBM has not been studied in models of chronic pain. Here, using in vivo tetrode recordings in behaving mice, we report that beta and gamma oscillatory activity is evoked in the NBM by noxious stimuli and is facilitated at peak inflammatory pain-like behavior. Optogenetic and chemogenetic cell-specific, reversible manipulations of NBM cholinergic-GABAergic neurons reveal their role in endogenous control of nociceptive hypersensitivity, which are manifest via projections to the prelimbic cortex, resulting in layer 5-mediated antinociception. Our data unravel the importance of the NBM in top-down control of neocortical processing of pain-like behavior.


Assuntos
Prosencéfalo Basal , Dor Crônica , Animais , Núcleo Basal de Meynert/fisiologia , Colinérgicos , Neurônios Colinérgicos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa