Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
J Hum Genet ; 69(11): 553-563, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38902431

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are located at the cell surface by a covalent attachment between protein and GPI embedded in the plasma membrane. This attachment is catalyzed by GPI transamidase comprising five subunits (PIGK, PIGS, PIGT, PIGU, and GPAA1) in the endoplasmic reticulum. Loss of either subunit of GPI transamidase eliminates cell surface localization of GPI-anchored proteins. In humans, pathogenic variants in either subunit of GPI transamidase cause neurodevelopmental disorders. However, how the loss of GPI-anchored proteins triggers neurodevelopmental defects remains largely unclear. Here, we identified a novel homozygous variant of PIGK, NM_005482:c.481A > G,p. (Met161Val), in a Japanese female patient with neurodevelopmental delay, hypotonia, cerebellar atrophy, febrile seizures, hearing loss, growth impairment, dysmorphic facial features, and brachydactyly. The missense variant was found heterozygous in her father, but not in her mother. Zygosity analysis revealed that the homozygous PIGK variant in the patient was caused by paternal isodisomy. Rescue experiments using PIGK-deficient CHO cells revealed that the p.Met161Val variant of PIGK reduced GPI transamidase activity. Rescue experiments using pigk mutant zebrafish confirmed that the p.Met161Val variant compromised PIGK function in tactile-evoked motor response. We also demonstrated that axonal localization of voltage-gated sodium channels and concomitant generation of action potentials were impaired in pigk-deficient neurons in zebrafish, suggesting a link between GPI-anchored proteins and neuronal defects. Taken together, the missense p.Met161Val variant of PIGK is a novel pathogenic variant that causes the neurodevelopmental disorder.


Assuntos
Homozigoto , Transtornos do Neurodesenvolvimento , Convulsões , Humanos , Feminino , Animais , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Convulsões/genética , Convulsões/patologia , Peixe-Zebra/genética , Células CHO , Cricetulus , Mutação de Sentido Incorreto , Proteínas de Membrana/genética , Atrofia/genética , Atrofia/patologia , Proteínas Ligadas por GPI/genética , Masculino , Linhagem , Aciltransferases , Moléculas de Adesão Celular
2.
J Hum Genet ; 69(2): 85-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030753

RESUMO

Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in deubiquitinating the enhanced epidermal growth factor receptor for escape from degradation. Somatic variants at a hotspot in USP8 are a cause of Cushing's disease, and a de novo germline USP8 variant at this hotspot has been described only once previously, in a girl with Cushing's disease and developmental delay. In this study, we investigated an exome-negative patient with severe developmental delay, dysmorphic features, and multiorgan dysfunction by long-read sequencing, and identified a 22-kb de novo germline deletion within USP8 (chr15:50469966-50491995 [GRCh38]). The deletion involved the variant hotspot, one rhodanese domain, and two SH3 binding motifs, and was presumed to be generated through nonallelic homologous recombination through Alu elements. Thus, the patient may have perturbation of the endosomal sorting system and mitochondrial autophagy through the USP8 defect. This is the second reported case of a germline variant in USP8.


Assuntos
Hipersecreção Hipofisária de ACTH , Feminino , Humanos , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/genética , Hipersecreção Hipofisária de ACTH/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
3.
Am J Med Genet A ; : e63910, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431794

RESUMO

Radio-Tartaglia syndrome (RATARS) (MIM#619312) is a genetic disorder caused by heterozygous truncating variants of SPEN on chromosome 1p36. This syndrome is extremely rare, with only 34 cases reported to date. RATARS is characterized by developmental delay, hypotonia, and intellectual disability. In this study, we report a Japanese girl with psychomotor delay, hypotonia, and facial features resembling Down syndrome (DS). We identified a de novo heterozygous pathogenic variant of SPEN and diagnosed her with RATARS. The patient was born at 38 weeks and 1 day of gestational age, weighing 2598 g, without respiratory or feeding difficulties. We first considered DS as a differential diagnosis based on the developmental delay with hypotonia and facial features, including an upslanted palpebral fissure, hypertelorism, epicanthus folds, and a low nose; however, it was ruled out after cytogenetic testing. Microarray analysis revealed no pathogenic aberrations. We performed trio-based whole exome sequencing and identified a recurrent pathogenic variant of SPEN:NM_015001.3:c.6223_6227del, p.(Ser2075GlufsTer46). Although some features of RATARS have been reported to be similar to those of 1p36 deletion syndrome, facial similarity to DS was a characteristic of our case. Whether this feature is unique to the patient or relatively common in individuals with RATARS should be discussed further as more cases of individuals with RATARS are reported.

4.
Am J Med Genet A ; 194(2): 268-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815018

RESUMO

Kabuki syndrome (KS) is characterized by growth impairment, psychomotor delay, congenital heart disease, and distinctive facial features. KMT2D and KDM6A have been identified as the causative genes of KS. Craniosynostosis (CS) has been reported in individuals with KS; however, its prevalence and clinical implications remain unclear. In this retrospective study, we investigated the occurrence of CS in individuals with genetically diagnosed KS and examined its clinical significance. Among 42 individuals with genetically diagnosed KS, 21 (50%) exhibited CS, with 10 individuals requiring cranioplasty. No significant differences were observed based on sex, causative gene, and molecular consequence among individuals with KS who exhibited CS. Both individuals who underwent evaluation with three-dimensional computed tomography (3DCT) and those who required surgery tended to exhibit cranial dysmorphology. Notably, in several individuals, CS was diagnosed before KS, suggesting that CS could be one of the clinical features by which clinicians can diagnose KS. This study highlights that CS is one of the noteworthy complications in KS, emphasizing the importance of monitoring cranial deformities in the health management of individuals with KS. The findings suggest that in individuals where CS is a concern, conducting 3DCT evaluations for CS and digital impressions are crucial.


Assuntos
Anormalidades Múltiplas , Craniossinostoses , Face/anormalidades , Doenças Hematológicas , Doenças Vestibulares , Humanos , Estudos Retrospectivos , Prevalência , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Doenças Hematológicas/complicações , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/epidemiologia , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/epidemiologia , Doenças Vestibulares/genética , Craniossinostoses/complicações , Craniossinostoses/diagnóstico , Craniossinostoses/epidemiologia , Histona Desmetilases/genética , Mutação
5.
Am J Med Genet A ; 194(10): e63726, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38814056

RESUMO

Pathogenic variants of polycomb repressive complex-2 (PRC2) subunits are associated with overgrowth syndromes and neurological diseases. EZH2 is a major component of PRC2 and mediates the methylation of H3K27 trimethylation (H3K27me3). Germline variants of EZH2 have been identified as a cause of Weaver syndrome (WS), an overgrowth/intellectual disability (OGID) syndrome characterized by overgrowth, macrocephaly, accelerated bone age, intellectual disability (ID), and characteristic facial features. Germline variants of SUZ12 and EED, other components of PRC2, have also been reported in the WS or Weaver-like syndrome. EZH1 is a homolog of EZH2 that interchangeably associates with SUZ12 and EED. Recently, pathogenic variants of EZH1 have been reported in individuals with dominant and recessive neurodevelopmental disorders. We herein present sisters with biallelic loss-of-function variants of EZH1. They showed developmental delay, ID, and central precocious puberty, but not the features of WS or other OGID syndromes.


Assuntos
Deficiência Intelectual , Mutação com Perda de Função , Complexo Repressor Polycomb 2 , Puberdade Precoce , Humanos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Alelos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deformidades Congênitas da Mão , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação com Perda de Função/genética , Fenótipo , Complexo Repressor Polycomb 2/genética , Puberdade Precoce/genética , Puberdade Precoce/patologia , Masculino , Recém-Nascido , Lactente
6.
HPB (Oxford) ; 26(3): 426-435, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38135551

RESUMO

BACKGROUND: Early laparoscopic cholecystectomy (ELC) is the standard treatment for acute cholecystitis (AC). However, predicting the difficulty of this procedure remains challenging. The present study aimed to develop an improved prediction model for surgical difficulty during ELC, surpassing the current Tokyo Guidelines 2018 (TG18) grading system. METHODS: We analyzed data from 201 consecutive patients who underwent ELC for AC between 2019 and 2021. Surgical difficulty was defined as the failure to achieve the critical view of safety (non-CVS). We developed a scoring system by conducting multivariate analysis on demographics, symptoms, laboratory data, and radiographic findings. The predictive accuracy of our scoring system was compared to that of the TG18 grading system (Grade I vs. Grade II/III). RESULTS: Through multivariate logistic regression analysis, a novel scoring system was formulated. This system incorporated preoperative C-reactive protein (CRP) values (≥5: 1 pt, ≥10: 2 pts, ≥15: 3 pts) and TG18 grading score (duration >72 h: 1 pt, image criteria for Grade II AC: 1 pt). Our model, a cutoff score of ≥3, exhibited a significantly elevated area under the curve (AUC) of 0.721 compared to the TG18 grading system alone (AUC 0.609) (p = 0.001). CONCLUSION: Combining preoperative CRP values with TG18 grading criteria can enhance the accuracy of predicting intraoperative difficulty in ELC for AC.


Assuntos
Colecistectomia Laparoscópica , Colecistite Aguda , Humanos , Colecistectomia Laparoscópica/efeitos adversos , Proteína C-Reativa/análise , Tóquio , Colecistite Aguda/diagnóstico por imagem , Colecistite Aguda/cirurgia , Análise Multivariada , Estudos Retrospectivos
7.
Hum Mol Genet ; 31(1): 69-81, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34346499

RESUMO

An optimal Golgi transport system is important for mammalian cells. The adenosine diphosphate (ADP) ribosylation factors (ARF) are key proteins for regulating cargo sorting at the Golgi network. In this family, ARF3 mainly works at the trans-Golgi network (TGN), and no ARF3-related phenotypes have yet been described in humans. We here report the clinical and genetic evaluations of two unrelated children with de novo pathogenic variants in the ARF3 gene: c.200A > T (p.Asp67Val) and c.296G > T (p.Arg99Leu). Although the affected individuals presented commonly with developmental delay, epilepsy and brain abnormalities, there were differences in severity, clinical course and brain lesions. In vitro subcellular localization assays revealed that the p.Arg99Leu mutant localized to Golgi apparatus, similar to the wild-type, whereas the p.Asp67Val mutant tended to show a disperse cytosolic pattern together with abnormally dispersed Golgi localization, similar to that observed in a known dominant negative variant (p.Thr31Asn). Pull-down assays revealed that the p.Asp67Val had a loss-of-function effect and the p.Arg99Leu variant had increased binding of the adaptor protein, Golgi-localized, γ-adaptin ear-containing, ARF-binding protein 1 (GGA1), supporting the gain of function. Furthermore, in vivo studies revealed that p.Asp67Val transfection led to lethality in flies. In contrast, flies expressing p.Arg99Leu had abnormal rough eye, as observed in the gain-of-function variant p.Gln71Leu. These data indicate that two ARF3 variants, the possibly loss-of-function p.Asp67Val and the gain-of-function p.Arg99Leu, both impair the Golgi transport system. Therefore, it may not be unreasonable that they showed different clinical features like diffuse brain atrophy (p.Asp67Val) and cerebellar hypoplasia (p.Arg99Leu).


Assuntos
Fatores de Ribosilação do ADP , Transtornos do Neurodesenvolvimento , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Encéfalo/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo
8.
Am J Hum Genet ; 106(5): 596-610, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243864

RESUMO

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.


Assuntos
Anormalidades Múltiplas/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Mutação , Complexo Repressor Polycomb 2/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Mosaicismo , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias , Reprodutibilidade dos Testes , Fatores de Transcrição , Adulto Jovem
9.
J Hum Genet ; 68(5): 363-367, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36631501

RESUMO

TNNI2 at 11p15.5 encodes troponin I2, fast skeletal type, which is a member of the troponin I gene family and a component of the troponin complex. Distal arthrogryposis (DA) is characterized by congenital limb contractures without primary neurological or muscular effects. DA is inherited in an autosomal dominant fashion and is clinically and genetically heterogeneous. Exome sequencing identified a causative variant in TNNI2 [NM_003282.4:c.532T>C p.(Phe178Leu)] in a Japanese girl with typical DA2b. Interestingly, the familial study using Sanger sequencing suggested a mosaic variant in her healthy father. Subsequent targeted amplicon-based deep sequencing detected the TNNI2 variant with variant allele frequencies of 9.4-17.7% in genomic DNA derived from peripheral blood leukocytes, saliva, hair, and nails in the father. We confirmed a disease-causing variant in TNNI2 in the proband inherited from her asymptomatic father with its somatic variant. Our case demonstrates that careful clinical and genetic evaluation is required in DA.


Assuntos
Artrogripose , Humanos , Feminino , Masculino , Artrogripose/genética , Mosaicismo , Troponina I/genética , Sarcômeros , Linhagem , Pai
10.
J Hum Genet ; 68(4): 247-253, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36509868

RESUMO

Pontocerebellar hypoplasia (PCH) is currently classified into 16 subgroups. Using mostly next-generation sequencing, pathogenic variants have been identified in as many as 24 PCH-associated genes. PCH type 8 (PCH8) is a rare heterogeneous disorder. Its clinical presentation includes severe development delay, increased muscle tone, microcephaly, and magnetic resonance imaging (MRI) abnormalities such as reduced cerebral white matter, a thin corpus callosum, and brainstem and cerebellar hypoplasia. To date, only two variants in the CHMP1A gene (MIM: 164010), NM_002768.5: c.88 C > T (p.Glu30*) and c.28-13 G > A, have been identified homozygously in seven patients with PCH8 from four families (MIM: 614961). CHMP1A is a subunit of the endosomal sorting complex required for transport III (ESCRT-III), which regulates the formation and release of extracellular vesicles. Biallelic CHMP1A loss of function impairs the ESCRT-III-mediated release of extracellular vesicles, which causes impaired progenitor proliferation in the developing brain. Herein, we report a patient with PCH8 who had a homozygous CHMP1A variant, c.122delA (p.Asn41Metfs*2), which arose from segmental uniparental disomy. Although our patient had similar MRI findings to those of previously reported patients, with no progression, we report some novel neurological and developmental findings that expand our knowledge of the clinical consequences associated with CHMP1A variants.


Assuntos
Doenças Cerebelares , Microcefalia , Humanos , Dissomia Uniparental/genética , Doenças Cerebelares/genética , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Microcefalia/complicações , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas de Transporte Vesicular/genética
11.
J Hum Genet ; 68(11): 751-757, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37423943

RESUMO

The mechanism of chromosomal rearrangement associated with inverted-duplication-deletion (INV-DUP-DEL) pattern formation has been investigated by many researchers, and several possible mechanisms have been proposed. Currently, fold-back and subsequent dicentric chromosome formation has been established as non-recurrent INV-DUP-DEL pattern formation mechanisms. In the present study, we analyzed the breakpoint junctions of INV-DUP-DEL patterns in five patients using long-read whole-genome sequencing and detected 2.2-6.1 kb copy-neutral regions in all five patients. At the end of the INV-DUP-DEL, two patients exhibited chromosomal translocations, which are recognized as telomere capture, and one patient showed direct telomere healing. The remaining two patients had additional small-sized intrachromosomal segments at the end of the derivative chromosomes. These findings have not been previously reported but they may only be explained by the presence of telomere capture breakage. Further investigations are required to better understand the mechanisms underlying this finding.

12.
Clin Genet ; 103(5): 590-595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36576140

RESUMO

AFF3 at 2q11.2 encodes the nuclear transcriptional activator AF4/FMR2 Family Member 3. AFF3 constitutes super elongation complex like 3, which plays a role in promoting the expression of genes involved in neurogenesis and development. The degron motif in AFF3 with nine highly conserved amino acids is recognized by E3 ubiquitin ligase to induce protein degradation. Recently, AFF3 missense variants in this region and variants featuring deletion including this region were identified and shown to cause KINSSHIP syndrome. In this study, we identified two novel and one previously reported missense variants in the degron of AFF3 in three unrelated Japanese patients. Notably, two of these three variants exhibited mosaicism in the examined tissues. This study suggests that mosaic variants also cause KINSSHIP syndrome, showing various phenotypes.


Assuntos
Células Germinativas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fenótipo , Proteínas Nucleares
13.
Am J Med Genet A ; 191(5): 1384-1387, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36750760

RESUMO

Beta-propeller protein-associated neurodegeneration (BPAN), a subgroup of neurodegeneration with brain iron accumulation, is typically characterized by non-progressive global developmental delay and seizures in childhood, followed by progressive neurological decline with parkinsonism and dementia in adolescence or early adulthood. It is difficult to clinically identify a patient with BPAN in childhood. Recent studies reported that serum levels of neuron-specific enolase (NSE) were elevated in children with BPAN. We reviewed the time course of serum NSE levels in a 21-year-old female patient genetically diagnosed (a de novo WDR45 variant c.268A > T) with BPAN, which was suspected based on prolonged elevation of serum NSE. There was an overall tendency for serum NSE levels to decrease in a stepwise fashion. The peak serum NSE level was observed during the first 2 years of age and then decreased rapidly in 1 year. High serum NSE levels persisted between 3 and 11 years of age. Subsequently, serum NSE levels decreased and plateaued after 13 years of age. There were tendencies for both blood AST and LDH levels to decrease over time in parallel with serum NSE levels. Serum NSE levels may be a diagnostic biomarker of BPAN in children but becomes of less value in identifying a patient with BPAN after childhood.


Assuntos
Distúrbios do Metabolismo do Ferro , Distrofias Neuroaxonais , Criança , Adolescente , Humanos , Feminino , Lactente , Adulto , Adulto Jovem , Proteínas de Transporte , Distrofias Neuroaxonais/diagnóstico , Distrofias Neuroaxonais/genética , Fosfopiruvato Hidratase/genética , Convulsões
14.
Am J Med Genet A ; 191(2): 400-407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345653

RESUMO

Interstitial microdeletions in the long arm of chromosome 3 are rare. In this study, we identified two patients with approximately 5-Mb overlapping deletions in the 3q26.2q26.31 region. Both patients showed neurodevelopmental delays, congenital heart defects, and distinctive facial features. One of them showed growth deficiency and brain abnormalities, as shown on a magnetic resonance imaging scan. Haploinsufficiency of NLGN1 and FNDC3B present in the common deletion region was considered to be responsible for neurodevelopmental delay and the distinctive features, respectively. The possibility of unmasked variants in PLD1 was considered and analyzed, but no possible pathogenic variant was found, and the mechanism of the congenital heart defects observed in the patients is unknown. Because 3q26.2q26.31 deletions are rare, more information is required to establish genotype-phenotype correlations associated with microdeletions in this region.


Assuntos
Cardiopatias Congênitas , Malformações do Sistema Nervoso , Humanos , Deleção Cromossômica , Fenótipo , Cardiopatias Congênitas/genética , Malformações do Sistema Nervoso/genética
15.
Am J Med Genet A ; 191(1): 112-119, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36282026

RESUMO

Most chromosomal aberrations revealed by chromosomal microarray testing (CMA) are simple; however, very complex chromosomal structural rearrangements can also be found. Although the mechanism of structural rearrangements has been gradually revealed, not all mechanisms have been elucidated. We analyzed the breakpoint-junctions (BJs) of two or more clustered copy number variations (CNVs) in the same chromosome arms to understand their conformation and the mechanism of complex structural rearrangements. Combining CMA with long-read whole-genome sequencing (WGS) analysis, we successfully determined all BJs for the clustered CNVs identified in four patients. Multiple CNVs were intricately intertwined with each other, and clustered CNVs in four patients were involved in global complex chromosomal rearrangements. The BJs of two clustered deletions identified in two patients showed microhomologies, and their characteristics were explained by chromothripsis. In contrast, the BJs in the other two patients, who showed clustered deletions and duplications, consisted of blunt-end and nontemplated insertions. These findings could be explained only by alternative nonhomologous end-joining, a mechanism related to polymerase theta. All the patients had at least one inverted segment. Three patients showed cryptic aberrations involving a disruption and a deletion/duplication, which were not detected by CMA but were first identified by WGS. This result suggested that complex rearrangements should be considered if clustered CNVs are observed in the same chromosome arms. Because CMA has potential limitations in genotype-phenotype correlation analysis, a more detailed analysis by whole genome examination is recommended in cases of suspected complex structural aberrations.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Humanos , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Aberrações Cromossômicas , Análise de Sequência
16.
Surg Endosc ; 37(10): 7876-7883, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640952

RESUMO

BACKGROUND: Indocyanine green fluorescence imaging (ICG-FI) has been reported to be useful in reducing the incidence of anastomotic leakage (AL) in colectomy. This study aimed to investigate the correlation between the required time for ICG fluorescence emission and AL in left-sided colon and rectal cancer surgery using the double-stapling technique (DST) anastomosis. METHODS: This retrospective study included 217 patients with colorectal cancer who underwent left-sided colon and rectal surgery using ICG-FI-based perfusion assessment at our department between November 2018 and July 2022. We recorded the time required to achieve maximum fluorescence emission after ICG systemic injection and assessed its correlation with the occurrence of AL. RESULTS: Among 217 patients, AL occurred in 21 patients (9.7%). The median time from ICG administration to maximum fluorescence emission was 32 s (range 25-58 s) in the AL group and 28 s (range 10-45 s) in the non-AL group (p < 0.001). The cut-off value for the presence of AL obtained from the ROC curve was 31 s. In 58 patients with a required time for ICG fluorescence of 31 s or longer, the following risk factors for AL were identified: low preoperative albumin [3.4 mg/dl (range 2.6-4.4) vs. 3.9 mg/dl (range 2.6-4.9), p = 0.016], absence of preoperative mechanical bowel preparation (53.8% vs. 91.1%, p = 0.005), obstructive tumor (61.5% vs. 17.8%, p = 0.004), and larger tumor diameter [65 mm (range 40-90) vs. 35 mm (range 4.0-100), p < 0.001]. CONCLUSION: The time required for ICG fluorescence emission was associated with AL.


Assuntos
Neoplasias Colorretais , Laparoscopia , Neoplasias Retais , Humanos , Verde de Indocianina , Neoplasias Colorretais/cirurgia , Estudos Retrospectivos , Corantes , Laparoscopia/métodos , Neoplasias Retais/complicações , Anastomose Cirúrgica/efeitos adversos , Anastomose Cirúrgica/métodos , Fístula Anastomótica/etiologia , Fístula Anastomótica/prevenção & controle , Fístula Anastomótica/epidemiologia , Colectomia/métodos , Perfusão
17.
Surg Endosc ; 37(8): 6051-6061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118031

RESUMO

BACKGROUND: Early laparoscopic cholecystectomy (ELC) for acute cholecystitis (AC) poses multiple challenges. The Tokyo Guidelines 2018 (TG18) eliminated the time limit (< 72 h) and expanded the surgical indication to severe AC. This study aimed to evaluate the clinical outcomes of ELC for AC following the TG18 in a single high-volume center. METHODS: From 2019 to 2021, we managed all AC patients with a TG18 flowchart and prospectively enrolled those who underwent ELC within 7 days of symptom onset. The primary outcome was overall morbidity, with a comparison between mild (Grade I) and moderate/severe (Grade II/III) AC. RESULTS: During the study period, 201 patients underwent ELC was for Grade I (56.2%), II (40.3%), and III (3.5%) ACs. Mean age was 69 ± 15.2 years and time to surgery from symptom onset was 0 (12.9%), 1-3 (66.7%), and 4-7 days (20.4%). Mean operative time and blood loss were 118.9 ± 42.7 min and 57.8 ± 99.4 mL, respectively. The critical view of safety (CVS) was achieved in 76.1% of patients, and bailout procedures were performed in 21.4%. There were no open conversions or bile duct injuries. Major morbidities (Clavien-Dindo classification ≥ IIIa) were observed in 5.5% of cases and mortality in 0.5%. Comparing Grades II/III to Grade I, operative time was longer (112.3 vs. 127.3 min, p = 0.014), blood loss was higher (40.3 vs. 80.1 mL, p = 0.005), the CVS rate was lower (83.2 vs. 67.0%, p = 0.012), and the major morbidity rate was higher (1.8 vs. 10.2%, p = 0.012). In the subgroup analysis of Grade II/III, there were no significant differences in major morbidities (p = 0.288) between the two groups (0-3 vs. 4-7 days). CONCLUSION: ELC for AC following TG18 is feasible with low morbidity rates. However, ELC for Grade II/III ACs remains challenging, and surgeons must carefully assess intraoperative difficulties and surgical risks before proceeding.


Assuntos
Colecistectomia Laparoscópica , Colecistite Aguda , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Colecistectomia Laparoscópica/efeitos adversos , Colecistectomia Laparoscópica/métodos , Tóquio , Estudos Prospectivos , Estudos Retrospectivos , Colecistite Aguda/cirurgia , Colecistite Aguda/diagnóstico , Resultado do Tratamento
18.
Hum Mutat ; 43(1): 3-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618388

RESUMO

Costello syndrome (CS) is an autosomal-dominant disorder characterized by distinctive facial features, hypertrophic cardiomyopathy, skeletal abnormalities, intellectual disability, and predisposition to cancers. Germline variants in HRAS have been identified in patients with CS. Intragenic HRAS duplications have been reported in three patients with a milder phenotype of CS. In this study, we identified two known HRAS variants, p.(Glu63_Asp69dup), p.(Glu62_Arg68dup), and one novel HRAS variant, p.(Ile55_Asp57dup), in patients with CS, including a patient with craniosynostosis. These intragenic duplications are located in the G3 domain and the switch II region. Cells expressing cDNA with these three intragenic duplications showed an increase in ELK-1 transactivation. Injection of wild-type or mutant HRAS mRNAs with intragenic duplications in zebrafish embryos showed significant elongation of the yolk at 11 h postfertilization, which was improved by MEK inhibitor treatment, and a variety of developmental abnormalities at 3 days post fertilization was observed. These results indicate that small in-frame duplications affecting the G3 domain and switch II region of HRAS increase the activation of the ERK pathway, resulting in developmental abnormalities in zebrafish or patients with CS.


Assuntos
Anormalidades Múltiplas , Síndrome de Costello , Anormalidades Múltiplas/genética , Animais , Síndrome de Costello/genética , Humanos , Sistema de Sinalização das MAP Quinases , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Peixe-Zebra/genética
19.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344616

RESUMO

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Assuntos
Anormalidades Craniofaciais , Nanismo , Deformidades Congênitas dos Membros , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Anormalidades Urogenitais , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Nanismo/diagnóstico , Nanismo/genética , Genes Recessivos , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Masculino , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética
20.
Am J Hum Genet ; 104(6): 1233-1240, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130285

RESUMO

Noonan syndrome (NS) is characterized by distinctive craniofacial appearance, short stature, and congenital heart disease. Approximately 80% of individuals with NS harbor mutations in genes whose products are involved in the RAS/mitogen-activating protein kinase (MAPK) pathway. However, the underlying genetic causes in nearly 20% of individuals with NS phenotype remain unexplained. Here, we report four de novo RRAS2 variants in three individuals with NS. RRAS2 is a member of the RAS subfamily and is ubiquitously expressed. Three variants, c.70_78dup (p.Gly24_Gly26dup), c.216A>T (p.Gln72His), and c.215A>T (p.Gln72Leu), have been found in cancers; our functional analyses showed that these three changes induced elevated association of RAF1 and that they activated ERK1/2 and ELK1. Notably, prominent activation of ERK1/2 and ELK1 by p.Gln72Leu associates with the severe phenotype of the individual harboring this change. To examine variant pathogenicity in vivo, we generated zebrafish models. Larvae overexpressing c.70_78dup (p.Gly24_Gly26dup) or c.216A>T (p.Gln72His) variants, but not wild-type RRAS2 RNAs, showed craniofacial defects and macrocephaly. The same dose injection of mRNA encoding c.215A>T (p.Gln72Leu) caused severe developmental impairments and low dose overexpression of this variant induced craniofacial defects. In contrast, the RRAS2 c.224T>G (p.Phe75Cys) change, located on the same allele with p.Gln72His in an individual with NS, resulted in no aberrant in vitro or in vivo phenotypes by itself. Together, our findings suggest that activating RRAS2 mutations can cause NS and expand the involvement of RRAS2 proto-oncogene to rare germline disorders.


Assuntos
Mutação com Ganho de Função , Mutação em Linhagem Germinativa , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Síndrome de Noonan/etiologia , Peixe-Zebra/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Exoma , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Conformação Proteica , Proto-Oncogene Mas , Homologia de Sequência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa